A Participant-based Approach for Event Summarization Using Twitter Streams

Twitter offers an unprecedented advantage on live reporting of the events happening around the world. However, summarizing the Twitter event has been a challenging task that was not fully explored in the past. In this paper, we propose a participant-based event summarization approach that “zooms-in” the Twitter event streams to the participant level, detects the important sub-events associated with each participant using a novel mixture model that combines the “burstiness” and “cohesiveness” properties of the event tweets, and generates the event summaries progressively. We evaluate the proposed approach on different event types. Results show that the participantbased approach can effectively capture the sub-events that have otherwise been shadowed by the long-tail of other dominant sub-events, yielding summaries with considerably better coverage than the state-of-the-art.

[1]  Josef van Genabith,et al.  #hardtoparse: POS Tagging and Parsing the Twitterverse , 2011, Analyzing Microtext.

[2]  Julio Gonzalo,et al.  Towards real-time summarization of scheduled events from twitter streams , 2012, HT '12.

[3]  Shashi Narayan,et al.  Proceedings of the 24th International Conference on Computational Linguistics (COLING) , 2012, International Conference on Computational Linguistics.

[4]  Deepayan Chakrabarti,et al.  Event Summarization Using Tweets , 2011, ICWSM.

[5]  Brendan T. O'Connor,et al.  Part-of-Speech Tagging for Twitter: Annotation, Features, and Experiments , 2010, ACL.

[6]  Jugal K. Kalita,et al.  Comparing Twitter Summarization Algorithms for Multiple Post Summaries , 2011, 2011 IEEE Third Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int'l Conference on Social Computing.

[7]  Fei Liu,et al.  A Broad-Coverage Normalization System for Social Media Language , 2012, ACL.

[8]  Lillian Lee,et al.  Measures of Distributional Similarity , 1999, ACL.

[9]  Ee-Peng Lim,et al.  Finding Bursty Topics from Microblogs , 2012, ACL.

[10]  Annie Louis,et al.  Summarization of Business-Related Tweets: A Concept-Based Approach , 2012, COLING.

[11]  Brendan T. O'Connor,et al.  TweetMotif: Exploratory Search and Topic Summarization for Twitter , 2010, ICWSM.

[12]  Hiroya Takamura,et al.  Summarizing a Document Stream , 2011, ECIR.

[13]  Fei Liu,et al.  Insertion, Deletion, or Substitution? Normalizing Text Messages without Pre-categorization nor Supervision , 2011, ACL.

[14]  Hila Becker,et al.  Automatic Identification and Presentation of Twitter Content for Planned Events , 2011, ICWSM.

[15]  Lucy Vanderwende,et al.  Exploring Content Models for Multi-Document Summarization , 2009, NAACL.

[16]  Yang Liu,et al.  Why is “SXSW” trending? Exploring Multiple Text Sources for Twitter Topic Summarization , 2011 .

[17]  Jugal K. Kalita,et al.  Experiments in Microblog Summarization , 2010, 2010 IEEE Second International Conference on Social Computing.

[18]  Mark T. Maybury,et al.  Automatic Summarization , 2002, Computational Linguistics.

[19]  Sanda M. Harabagiu,et al.  Relevance Modeling for Microblog Summarization , 2011, ICWSM.

[20]  Oren Etzioni,et al.  Open domain event extraction from twitter , 2012, KDD.

[21]  Lin Zhong,et al.  Human as Real-Time Sensors of Social and Physical Events: A Case Study of Twitter and Sports Games , 2011, ArXiv.

[22]  Michael S. Bernstein,et al.  Twitinfo: aggregating and visualizing microblogs for event exploration , 2011, CHI.

[23]  Ani Nenkova,et al.  The Pyramid Method: Incorporating human content selection variation in summarization evaluation , 2007, TSLP.

[24]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[25]  Miles Osborne,et al.  Streaming First Story Detection with application to Twitter , 2010, NAACL.

[26]  Jacob Eisenstein,et al.  What to do about bad language on the internet , 2013, NAACL.

[27]  Oren Etzioni,et al.  Named Entity Recognition in Tweets: An Experimental Study , 2011, EMNLP.

[28]  Chin-Yew Lin,et al.  ROUGE: A Package for Automatic Evaluation of Summaries , 2004, ACL 2004.

[29]  Feifan Liu,et al.  Exploring Correlation Between ROUGE and Human Evaluation on Meeting Summaries , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[30]  Jeffrey Nichols,et al.  Summarizing sporting events using twitter , 2012, IUI '12.

[31]  James Allan,et al.  Topic detection and tracking: event-based information organization , 2002 .

[32]  Hila Becker,et al.  Beyond Trending Topics: Real-World Event Identification on Twitter , 2011, ICWSM.

[33]  Jugal K. Kalita,et al.  Summarizing Microblogs Automatically , 2010, NAACL.

[34]  Shou-De Lin,et al.  IMASS: An Intelligent Microblog Analysis and Summarization System , 2011, ACL.