New 1,3,5-dithiazinanes bearing β-alcohol or β-sulphonates chains at C2. Non classical S→phenyl and S→C interactions

[1]  Pedro Montes-Tolentino,et al.  NMR and theoretical analyses of electronic effects in N-BH3 adducts of (1,3,5-dithiazin-2-yl)silanes and stannanes. Intramolecular interactions of chemically identical S•••S atoms , 2022, Journal of Molecular Structure.

[2]  Pedro Montes-Tolentino,et al.  Tin complexes derived from nitrogen-based 1,3,5-heterocyclohexanes bearing 2-hydroxypropan-1-yl, 2-diphenylphosphitepropan-1-yl and 2-diphenylphosphinepropan-1-yl as pendant N-substituents , 2022, Journal of Molecular Structure.

[3]  A. Frontera,et al.  On the Importance of σ–Hole Interactions in Crystal Structures , 2021, Crystals.

[4]  Amos B. Smith,et al.  Evolution of Anion Relay Chemistry: Construction of Architecturally Complex Natural Products. , 2020, Accounts of chemical research.

[5]  Pedro Montes-Tolentino,et al.  Structural analysis of tris(5-methyl- [1,3,5]-dithiazinan-2-yl)stibine, its reactions with chalcogens. Intramolecular chalcogen-bonding interactions , 2020 .

[6]  Pedro Montes-Tolentino,et al.  Structural analysis of (5-methyl-[1,3,5]-dithiazinan-2-yl)phosphines and their oxides. N-Borane adducts as conformational probes , 2018, Inorganica Chimica Acta.

[7]  E. Tiekink,et al.  Sulfur(lone-pair)…π interactions with FAD in flavoenzymes , 2018 .

[8]  A. Aliev,et al.  Noncovalent Interactions of π Systems with Sulfur: The Atomic Chameleon of Molecular Recognition. , 2018, Angewandte Chemie.

[9]  Á. Montaña The σ and π Holes. The Halogen and Tetrel Bondings: Their Nature, Importance and Chemical, Biological and Medicinal Implications , 2017 .

[10]  A. Vela,et al.  Theoretical approach to the conformational analyses of dithiazinane, thiadiazinane and triazinane, their N-borane adducts and N-H cations , 2016 .

[11]  Santosh K. Singh,et al.  The n → π* interaction: a rapidly emerging non-covalent interaction. , 2015, Physical chemistry chemical physics : PCCP.

[12]  Edgar Mijangos,et al.  Synthesis and structural study of bis-, tris- and tetra-[1,3,5]-dithiazinanyl silanes and stannanes , 2014 .

[13]  R. Contreras,et al.  Mono- and di-alkyl-[1,3,5]-dithiazinanes and their N–borane adducts revisited. Structural and theoretical study , 2013 .

[14]  R. Contreras,et al.  Tripodal molecules derived from ethanoldithiazinanes centered on boron and phosphorus atoms. Structural analyses by NMR and HF/6-31G(d) calculations , 2010 .

[15]  Peter Politzer,et al.  Expansion of the σ-hole concept , 2009, Journal of molecular modeling.

[16]  Ashley L. Ringer,et al.  Models of S/π interactions in protein structures: Comparison of the H2S–benzene complex with PDB data , 2007, Protein science : a publication of the Protein Society.

[17]  R. Contreras,et al.  Boron and gallium esters derived from 2-(1,3,5-dithiazinan-5-yl)- ethanols , 2007 .

[18]  J. Gálvez-Ruíz,et al.  Group 13 Complexes of 5-Methyl-1,3,5-dithiazinane (‡) , 2004 .

[19]  A. Flores‐Parra,et al.  Organometallic aluminum compounds derived from 2-(1,3,5-dithiazinan-5-yl)ethanol ligands. , 2003, Inorganic Chemistry.

[20]  E. Stevens,et al.  Synthesis, lipophilicity and structure of 2,5-disubstituted 1, 3, 5-dithiazine derivatives , 2003 .

[21]  R. Contreras,et al.  BHδ––δ+HC Interactions in N‐Borane and N‐Chloroborane Adducts Derived from 1,3,5‐Heterocyclohexanes , 1999 .

[22]  A. Flores‐Parra,et al.  Structural Analyses of Borane and Chloroborane Adducts of 1,3,5‐Dithiaza‐, ‐Dioxaza‐, ‐Thiadiaza‐, and ‐Triazacyclohexanes and Their Rearrangement Products, Boracyclohexanes , 1999 .

[23]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[24]  L. Martínez-Aguilera,et al.  A New Lithium 5‐Methyl‐1,3‐dithia‐5‐azacyclohex‐2‐ylborate —5‐Borane and Two Dimeric 5‐Methyl‐1,3‐dithia‐5‐azacyclohex‐2‐yllithium Compounds — Stereochemistry and Reactivity , 1997 .

[25]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[26]  F. Khuong-Huu,et al.  13C and 1H NMR investigations of quinic acid derivatives: Complete spectral assignment and elucidation of preferred conformations , 1989 .

[27]  D. Seebach,et al.  Methods of Reactivity Umpolung , 1979 .

[28]  G. Cadenas-Pliego,et al.  New perhydrodithiazines, NMR and X-ray diffraction studies , 1993 .