A Bayesian approach to nonlinear random effects models.

Nonlinear random effects models are considered from the Bayesian point of view. The method of analysis follows closely that of Lindley and Smith (1972, Journal of the Royal Statistical Society, Series B 34, 1-42). The numerical method is related to the EM algorithm.

[1]  C. Berkey Bayesian approach for a nonlinear growth model. , 1982, Biometrics.

[2]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[3]  S. Geisser,et al.  A Predictive Approach to Model Selection , 1979 .

[4]  A. J. Barr,et al.  SAS user's guide , 1979 .

[5]  T. Fearn,et al.  The Chatham Blood Pressure Study. An application of Bayesian growth curve models to a longitudinal study of blood pressure in children. , 1979, International journal of epidemiology.

[6]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[7]  R. Jennrich Asymptotic Properties of Non-Linear Least Squares Estimators , 1969 .

[8]  George E. P. Box,et al.  Sampling and Bayes' inference in scientific modelling and robustness , 1980 .

[9]  David Lindley,et al.  THE ESTIMATION OF MANY PARAMETERS , 1970 .

[10]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[11]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[12]  Melvin R. Novick,et al.  ESTIMATING MULTIPLE REGRESSIONS IN m GROUPS: A CROSS‐VALIDATION STUDY , 1972 .

[13]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[14]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[15]  I. Langmuir THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. , 1918 .

[16]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[17]  J F Boisvieux,et al.  Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixed-effect model. , 1984, Drug metabolism reviews.

[18]  J. Naylor,et al.  Applications of a Method for the Efficient Computation of Posterior Distributions , 1982 .

[19]  L. M. M.-T. Theory of Probability , 1929, Nature.

[20]  R. Shibata Asymptotically Efficient Selection of the Order of the Model for Estimating Parameters of a Linear Process , 1980 .

[21]  M. Bartlett A comment on D. V. Lindley's statistical paradox , 1957 .

[22]  J. Ware,et al.  Random-effects models for serial observations with binary response. , 1984, Biometrics.

[23]  Peter Schmidt,et al.  The Theory and Practice of Econometrics , 1985 .

[24]  H. L. Lucas,et al.  DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS , 1959 .

[25]  D. Rubin,et al.  Estimation in Covariance Components Models , 1981 .

[26]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .