A plethora of carbapenem resistance in Acinetobacter baumannii: no end to a long insidious genetic journey

Acinetobacter baumannii, notorious for causing nosocomial infections especially in patients admitted to intensive care unit (ICU) and burn units, is best at displaying resistance to all existing antibiotic classes. Consequences of high potential for antibiotic resistance has resulted in extensive drug or even pan drug resistant A. baumannii. Carbapenems, mainly imipenem and meropenem, the last resort for the treatment of A. baumannii infections have fallen short due to the emergence of carbapenem resistant A. baumannii (CRAB). Though enzymatic degradation by production of class D β-lactamases (Oxacillinases) and class B β-lactamases (Metallo β-lactamases) is the core mechanism of carbapenem resistance in A. baumannii; however over-expression of efflux pumps such as resistance-nodulation cell division (RND) family and variant form of porin proteins such as CarO have been implicated for CRAB inception. Transduction and outer membrane vesicles-mediated transfer play a role in carbapenemase determinants spread. Colistin, considered as the most promising antibacterial agent, nevertheless faces adverse effects flaws. Cefiderocol, eravacycline, new β-lactam antibiotics, non-β-lactam-β-lactamase inhibitors, polymyxin B-derived molecules and bacteriophages are some other new treatment options streamlined.

[1]  M. Skurnik,et al.  Identification and Functional Analysis of Temperate Siphoviridae Bacteriophages of Acinetobacter baumannii , 2020, Viruses.

[2]  P. Rather,et al.  Insights Into Mechanisms of Biofilm Formation in Acinetobacter baumannii and Implications for Uropathogenesis , 2020, Frontiers in Cellular and Infection Microbiology.

[3]  V. González,et al.  Prophages Encode Antibiotic Resistance Genes in Acinetobacter baumannii. , 2020, Microbial drug resistance.

[4]  A. Abouelfetouh,et al.  Phenotypic and genotypic characterization of carbapenem-resistant Acinetobacter baumannii isolates from Egypt , 2019, Antimicrobial Resistance & Infection Control.

[5]  V. Miriagou,et al.  Carbapenem-resistant Acinetobacter baumannii: in pursuit of an effective treatment. , 2019, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[6]  K. Kimura,et al.  Intercellular Transfer of Chromosomal Antimicrobial Resistance Genes between Acinetobacter baumannii Strains Mediated by Prophages , 2019, Antimicrobial Agents and Chemotherapy.

[7]  H. Goodarzi,et al.  Association of the genes encoding Metallo-β-Lactamase with the presence of integrons among multidrug-resistant clinical isolates of Acinetobacter baumannii , 2019, Infection and drug resistance.

[8]  Jong-Hwan Park,et al.  Efficacy of bacteriophage treatment against carbapenem-resistant Acinetobacter baumannii in Galleria mellonella larvae and a mouse model of acute pneumonia , 2019, BMC Microbiology.

[9]  K. Pardesi,et al.  Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review , 2019, Front. Microbiol..

[10]  M. E. El Zowalaty,et al.  Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments , 2018, Infection and drug resistance.

[11]  R. Bonomo,et al.  New Treatment Options against Carbapenem-Resistant Acinetobacter baumannii Infections , 2018, Antimicrobial Agents and Chemotherapy.

[12]  S. Richter,et al.  1351. In vitro Activity of Cefiderocol (S-649266), a Siderophore Cephalosporin, Against Enterobacteriaceae With Defined Extended-Spectrum Β-Lactamases and Carbapenemases , 2018, Open Forum Infectious Diseases.

[13]  R. Schooley,et al.  Phage Therapy for a Multidrug-Resistant Acinetobacter baumannii Craniectomy Site Infection , 2018, Open forum infectious diseases.

[14]  S. Tyner,et al.  SPR741, an Antibiotic Adjuvant, Potentiates the In Vitro and In Vivo Activity of Rifampin against Clinically Relevant Extensively Drug-Resistant Acinetobacter baumannii , 2017, Antimicrobial Agents and Chemotherapy.

[15]  H. Fazeli,et al.  Isolation of bacteriophages against multidrug resistant Acinetobacter baumannii , 2017, Research in pharmaceutical sciences.

[16]  A. Oliver,et al.  Potent β-Lactam Enhancer Activity of Zidebactam and WCK 5153 against Acinetobacter baumannii, Including Carbapenemase-Producing Clinical Isolates , 2017, Antimicrobial Agents and Chemotherapy.

[17]  R. Bonomo,et al.  Activity of the β-Lactamase Inhibitor LN-1-255 against Carbapenem-Hydrolyzing Class D β-Lactamases from Acinetobacter baumannii , 2017, Antimicrobial Agents and Chemotherapy.

[18]  Forest Rohwer,et al.  Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection , 2017, Antimicrobial Agents and Chemotherapy.

[19]  S. Chatterjee,et al.  Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles , 2017, The Journal of antimicrobial chemotherapy.

[20]  D. Ehmann,et al.  ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii , 2017, Nature Microbiology.

[21]  N. Woodford,et al.  WCK 4234, a novel diazabicyclooctane potentiating carbapenems against Enterobacteriaceae, Pseudomonas and Acinetobacter with class A, C and D &bgr;-lactamases , 2017, The Journal of antimicrobial chemotherapy.

[22]  M. El Sayed Zaki,et al.  Molecular Study of Acinetobacter baumannii Isolates for Metallo-β-Lactamases and Extended-Spectrum-β-Lactamases Genes in Intensive Care Unit, Mansoura University Hospital, Egypt , 2017, International journal of microbiology.

[23]  Ming-Feng Lin,et al.  Distribution of different efflux pump genes in clinical isolates of multidrug-resistant Acinetobacter baumannii and their correlation with antimicrobial resistance. , 2017, Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.

[24]  S. Shoja,et al.  Plasmid borne Carbapenem-Hydrolyzing Class D β-Lactamases (CHDLs) and AdeABC efflux pump conferring carbapenem-tigecycline resistance among Acinetobacter baumannii isolates harboring TnAbaRs. , 2017, Microbial pathogenesis.

[25]  Ghada E. Amr,et al.  Characterization of Carbapenem Resistant Acinetobacter baumannii causing Ventilator associated Pneumonia in ICUs of Zagazig University Hospitals, Egypt , 2016 .

[26]  I. Kusradze,et al.  Characterization and Testing the Efficiency of Acinetobacter baumannii Phage vB-GEC_Ab-M-G7 as an Antibacterial Agent , 2016, Front. Microbiol..

[27]  P. Nordmann,et al.  Transposition of Tn125 Encoding the NDM-1 Carbapenemase in Acinetobacter baumannii , 2016, Antimicrobial Agents and Chemotherapy.

[28]  S. Domingues,et al.  Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii , 2016, Microorganisms.

[29]  Nicole J. Crane,et al.  Personalized Therapeutic Cocktail of Wild Environmental Phages Rescues Mice from Acinetobacter baumannii Wound Infections , 2016, Antimicrobial Agents and Chemotherapy.

[30]  A. Pühler,et al.  Intraspecies Transfer of the Chromosomal Acinetobacter baumannii blaNDM-1 Carbapenemase Gene , 2016, Antimicrobial Agents and Chemotherapy.

[31]  Saad B. Almasaudi Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features , 2016, Saudi journal of biological sciences.

[32]  J. Schrenzel,et al.  Characteristics of multidrug-resistant Acinetobacter baumannii strains isolated in Geneva during colonization or infection , 2015, Annals of Clinical Microbiology and Antimicrobials.

[33]  Jinwei Huang,et al.  Characterization of carbapenem-resistant Acinetobacter baumannii isolates in a Chinese teaching hospital , 2015, Front. Microbiol..

[34]  F. Tuon,et al.  Combined therapy for multi-drug-resistant Acinetobacter baumannii infection--is there evidence outside the laboratory? , 2015, Journal of medical microbiology.

[35]  H. Ammari,et al.  High prevalence of multidrug-resistance in Acinetobacter baumannii and dissemination of carbapenemase-encoding genes blaOXA-23-like, blaOXA-24-like and blaNDM-1 in Algiers hospitals. , 2015, Asian Pacific journal of tropical medicine.

[36]  S. Alsareii,et al.  Molecular characterization of oxacillinases among carbapenem-resistant Acinetobacter baumannii nosocomial isolates in a Saudi hospital. , 2015, Journal of infection and public health.

[37]  S. Nzala,et al.  Molecular identification of non-tuberculous mycobacteria isolated from clinical specimens in Zambia , 2015, Annals of Clinical Microbiology and Antimicrobials.

[38]  Ming-Feng Lin,et al.  Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. , 2014, World journal of clinical cases.

[39]  Y. Doi,et al.  Treatment Options for Carbapenem-Resistant and Extensively Drug-Resistant Acinetobacterbaumannii Infections , 2014, Drugs.

[40]  Yahui Wang,et al.  Characterization, sequencing and comparative genomic analysis of vB_AbaM-IME-AB2, a novel lytic bacteriophage that infects multidrug-resistant Acinetobacter baumannii clinical isolates , 2014, BMC Microbiology.

[41]  D. Livermore,et al.  Distribution of β-lactamases in carbapenem-non-susceptible Acinetobacter baumannii in Riyadh, Saudi Arabia. , 2014, Journal of global antimicrobial resistance.

[42]  M. Tóth,et al.  Class D β-Lactamases: Are They All Carbapenemases? , 2014, Antimicrobial Agents and Chemotherapy.

[43]  Huaxi Xu,et al.  Development of Efflux Pumps and Inhibitors (EPIs) in A. baumanii , 2014 .

[44]  J. Vila,et al.  Role of OmpA in the Multidrug Resistance Phenotype of Acinetobacter baumannii , 2013, Antimicrobial Agents and Chemotherapy.

[45]  J. Vila,et al.  Contribution of Efflux Pumps, Porins, and β-Lactamases to Multidrug Resistance in Clinical Isolates of Acinetobacter baumannii , 2013, Antimicrobial Agents and Chemotherapy.

[46]  P. Courvalin,et al.  RND-Type Efflux Pumps in Multidrug-Resistant Clinical Isolates of Acinetobacter baumannii: Major Role for AdeABC Overexpression and AdeRS Mutations , 2013, Antimicrobial Agents and Chemotherapy.

[47]  A. Peleg,et al.  Carbapenem resistance in Acinetobacter baumannii: laboratory challenges, mechanistic insights and therapeutic strategies , 2013, Expert review of anti-infective therapy.

[48]  M. McConnell,et al.  Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. , 2013, FEMS microbiology reviews.

[49]  S. Valdezate,et al.  Epidemiology of the Acinetobacter-derived cephalosporinase, carbapenem-hydrolysing oxacillinase and metallo-β-lactamase genes, and of common insertion sequences, in epidemic clones of Acinetobacter baumannii from Spain. , 2013, The Journal of antimicrobial chemotherapy.

[50]  P. Higgins,et al.  OXA-235, a Novel Class D β-Lactamase Involved in Resistance to Carbapenems in Acinetobacter baumannii , 2013, Antimicrobial Agents and Chemotherapy.

[51]  J. Martínez,et al.  RND multidrug efflux pumps: what are they good for? , 2013, Front. Microbio..

[52]  Shuai Le,et al.  Characterization and Genome Sequencing of Phage Abp1, a New phiKMV-Like Virus Infecting Multidrug-Resistant Acinetobacter baumannii , 2013, Current Microbiology.

[53]  L. Fernández,et al.  Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance , 2012, Clinical Microbiology Reviews.

[54]  F. Liu,et al.  Isolation and characterization of ZZ1, a novel lytic phage that infects Acinetobacter baumannii clinical isolates , 2012, BMC Microbiology.

[55]  S. Farajnia,et al.  Prevalence of OXA-type β-lactamases among Acinetobacter baumannii isolates from Northwest of Iran. , 2012, Microbial drug resistance.

[56]  A. Budak,et al.  Distribution of blaOXA genes among carbapenem-resistant Acinetobacter baumannii nosocomial strains in Poland. , 2012, The new microbiologica.

[57]  Vladimir Turaev,et al.  Quasi-Poisson structures on representation spaces of surfaces , 2012, 1205.4898.

[58]  C.M. Ying,et al.  Study of the Correlation of Imipenem Resistance with Efflux Pumps AdeABC, AdeIJK, AdeDE and AbeM in Clinical Isolates of Acinetobacter baumannii , 2012, Chemotherapy.

[59]  B. Chopade,et al.  Novel lytic bacteriophage AB7-IBB1 of Acinetobacter baumannii: isolation, characterization and its effect on biofilm , 2012, Archives of Virology.

[60]  P. Courvalin,et al.  Expression of the Resistance-Nodulation-Cell Division Pump AdeIJK in Acinetobacter baumannii Is Regulated by AdeN, a TetR-Type Regulator , 2012, Antimicrobial Agents and Chemotherapy.

[61]  V. Rotimi,et al.  Three distinct clones of carbapenem-resistant Acinetobacter baumannii with high diversity of carbapenemases isolated from patients in two hospitals in Kuwait. , 2012, Journal of infection and public health.

[62]  P. Nordmann,et al.  Genetic basis of antibiotic resistance in pathogenic Acinetobacter species , 2011, IUBMB life.

[63]  Abdullah A. Al-Arfaj,et al.  Genetic basis of carbapenem resistance in Acinetobacter clinical isolates in Saudi Arabia , 2011 .

[64]  D. Yong,et al.  Multidrug-Resistant Acinetobacter spp.: Increasingly Problematic Nosocomial Pathogens , 2011, Yonsei medical journal.

[65]  N. Soares,et al.  Proteomic and functional analyses reveal a unique lifestyle for Acinetobacter baumannii biofilms and a key role for histidine metabolism. , 2011, Journal of proteome research.

[66]  Ayush Kumar,et al.  Activity of the efflux pump inhibitor phenylalanine-arginine β-naphthylamide against the AdeFGH pump of Acinetobacter baumannii. , 2011, International journal of antimicrobial agents.

[67]  N. Soares,et al.  Horizontal Transfer of the OXA-24 Carbapenemase Gene via Outer Membrane Vesicles: a New Mechanism of Dissemination of Carbapenem Resistance Genes in Acinetobacter baumannii , 2011, Antimicrobial Agents and Chemotherapy.

[68]  D. Yong,et al.  Role of OXA-23 and AdeABC efflux pump for acquiring carbapenem resistance in an Acinetobacter baumannii strain carrying the blaOXA-66 gene. , 2010, Annals of clinical and laboratory science.

[69]  P. Courvalin,et al.  Efflux-Mediated Antibiotic Resistance in Acinetobacter spp , 2010, Antimicrobial Agents and Chemotherapy.

[70]  V. Manchanda,et al.  Multidrug Resistant Acinetobacter , 2010, Journal of global infectious diseases.

[71]  P. Courvalin,et al.  Overexpression of Resistance-Nodulation-Cell Division Pump AdeFGH Confers Multidrug Resistance in Acinetobacter baumannii , 2010, Antimicrobial Agents and Chemotherapy.

[72]  M. Falagas,et al.  Treatment of Acinetobacter infections , 2010 .

[73]  N. Gordon,et al.  Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. , 2010, International journal of antimicrobial agents.

[74]  Kenneth S. Thomson,et al.  Extended-Spectrum-β-Lactamase, AmpC, and Carbapenemase Issues , 2010, Journal of Clinical Microbiology.

[75]  P. Higgins,et al.  Global spread of carbapenem-resistant Acinetobacter baumannii. , 2010, The Journal of antimicrobial chemotherapy.

[76]  R. Bonomo,et al.  Three Decades of β-Lactamase Inhibitors , 2010, Clinical Microbiology Reviews.

[77]  K. Towner Acinetobacter: an old friend, but a new enemy. , 2009, The Journal of hospital infection.

[78]  P. Nordmann,et al.  OXA-143, a Novel Carbapenem-Hydrolyzing Class D β-Lactamase in Acinetobacter baumannii , 2009, Antimicrobial Agents and Chemotherapy.

[79]  P. Nordmann,et al.  Diversity, Epidemiology, and Genetics of Class D β-Lactamases , 2009, Antimicrobial Agents and Chemotherapy.

[80]  G. Peirano,et al.  Dissemination of multidrug-resistant Acinetobacter baumannii genotypes carrying bla(OXA-23) collected from hospitals in Rio de Janeiro, Brazil. , 2009, International journal of antimicrobial agents.

[81]  H. Nikaido,et al.  Mechanisms of RND multidrug efflux pumps. , 2009, Biochimica et biophysica acta.

[82]  George A. Jacoby,et al.  AmpC β-Lactamases , 2009, Clinical Microbiology Reviews.

[83]  P. Wieczorek,et al.  Multidrug resistant Acinetobacter baumannii--the role of AdeABC (RND family) efflux pump in resistance to antibiotics. , 2008, Folia histochemica et cytobiologica.

[84]  J. Quinn,et al.  New developments in carbapenems. , 2008, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[85]  S. Maddocks,et al.  Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. , 2008, Microbiology.

[86]  A. Antoniadou,et al.  Acinetobacter baumannii: a universal threat to public health? , 2008, International journal of antimicrobial agents.

[87]  Harald Seifert,et al.  Acinetobacter baumannii: Emergence of a Successful Pathogen , 2008, Clinical Microbiology Reviews.

[88]  D. Landman,et al.  Correlation of Antimicrobial Resistance with β-Lactamases, the OmpA-Like Porin, and Efflux Pumps in Clinical Isolates of Acinetobacter baumannii Endemic to New York City , 2008, Antimicrobial Agents and Chemotherapy.

[89]  Lisa L Maragakis,et al.  Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. , 2008, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[90]  S. Magnet,et al.  AdeIJK, a Resistance-Nodulation-Cell Division Pump Effluxing Multiple Antibiotics in Acinetobacter baumannii , 2008, Antimicrobial Agents and Chemotherapy.

[91]  L. Dijkshoorn,et al.  An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii , 2007, Nature Reviews Microbiology.

[92]  J. Vila,et al.  Prevalence of IS(Aba1) in epidemiologically unrelated Acinetobacter baumannii clinical isolates. , 2007, FEMS microbiology letters.

[93]  R. Bonomo,et al.  Global Challenge of Multidrug-Resistant Acinetobacter baumannii , 2007, Antimicrobial Agents and Chemotherapy.

[94]  Jordi Vila,et al.  Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. , 2007, The Journal of antimicrobial chemotherapy.

[95]  Ronald N. Jones,et al.  Characterization of an Integron Carrying blaIMP-1 and a New Aminoglycoside Resistance Gene, aac(6′)-31, and Its Dissemination among Genetically Unrelated Clinical Isolates in a Brazilian Hospital , 2007, Antimicrobial Agents and Chemotherapy.

[96]  D. Vallenet,et al.  Global comparison of the membrane subproteomes between a multidrug-resistant Acinetobacter baumannii strain and a reference strain. , 2006, Journal of proteome research.

[97]  P. Nordmann,et al.  Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. , 2006, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[98]  L. Piddock Multidrug-resistance efflux pumps ? not just for resistance , 2006, Nature Reviews Microbiology.

[99]  E. Ron,et al.  The Acinetobacter outer membrane protein A (OmpA) is a secreted emulsifier. , 2006, Environmental microbiology.

[100]  A. Oliver,et al.  OXA-24, a Novel Class D β-Lactamase with Carbapenemase Activity in an Acinetobacter baumannii Clinical Strain , 2006, Antimicrobial Agents and Chemotherapy.

[101]  M. Kaufmann,et al.  The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. , 2006, FEMS microbiology letters.

[102]  P. Nordmann,et al.  Genetic Structures at the Origin of Acquisition and Expression of the Carbapenem-Hydrolyzing Oxacillinase Gene blaOXA-58 in Acinetobacter baumannii , 2006, Antimicrobial Agents and Chemotherapy.

[103]  L. Piddock Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux Pumps in Bacteria , 2006, Clinical Microbiology Reviews.

[104]  E. Houang,et al.  Presence of active efflux systems AdeABC, AdeDE and AdeXYZ in different Acinetobacter genomic DNA groups. , 2006, Journal of medical microbiology.

[105]  N. Høiby,et al.  OXA-type carbapenemases. , 2006, The Journal of antimicrobial chemotherapy.

[106]  D. Vallenet,et al.  Channel Formation by CarO, the Carbapenem Resistance-Associated Outer Membrane Protein of Acinetobacter baumannii , 2005, Antimicrobial Agents and Chemotherapy.

[107]  G. Bou,et al.  Cloning and Functional Analysis of the Gene Encoding the 33- to 36-Kilodalton Outer Membrane Protein Associated with Carbapenem Resistance in Acinetobacter baumannii , 2005, Antimicrobial Agents and Chemotherapy.

[108]  M. Joly-Guillou,et al.  Clinical impact and pathogenicity of Acinetobacter. , 2005, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[109]  J. Pagés,et al.  Identification of an OprD homologue in Acinetobacter baumannii. , 2005, Journal of proteome research.

[110]  P. Nordmann,et al.  Regional Occurrence of Plasmid-Mediated Carbapenem-Hydrolyzing Oxacillinase OXA-58 in Acinetobacter spp. in Europe , 2005, Journal of Clinical Microbiology.

[111]  A. Viale,et al.  Acquisition of Resistance to Carbapenems in Multidrug-Resistant Clinical Strains of Acinetobacter baumannii: Natural Insertional Inactivation of a Gene Encoding a Member of a Novel Family of β-Barrel Outer Membrane Proteins , 2005, Antimicrobial Agents and Chemotherapy.

[112]  Y. Carmeli,et al.  Multidrug-Resistant Acinetobacter baumannii , 2005, Emerging infectious diseases.

[113]  E. Houang,et al.  Novel Resistance-Nodulation-Cell Division Efflux System AdeDE in Acinetobacter Genomic DNA Group 3 , 2004, Antimicrobial Agents and Chemotherapy.

[114]  L. Danziger,et al.  Multidrug-Resistant Acinetobacter Infections: An Emerging Challenge to Clinicians , 2004, The Annals of pharmacotherapy.

[115]  P. Courvalin,et al.  Expression of the RND-Type Efflux Pump AdeABC in Acinetobacter baumannii Is Regulated by the AdeRS Two-Component System , 2004, Antimicrobial Agents and Chemotherapy.

[116]  Y. Nitzan,et al.  Molecular and Structural Characterization of the HMP-AB Gene Encoding a Pore-Forming Protein from a Clinical Isolate of Acinetobacter baumannii , 2003, Current Microbiology.

[117]  F. Fernández-Cuenca,et al.  Relationship between beta-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii. , 2003, The Journal of antimicrobial chemotherapy.

[118]  K. Poole Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria. , 2002, Current pharmaceutical biotechnology.

[119]  N. Woodford,et al.  Characterization of OXA-25, OXA-26, and OXA-27, Molecular Class D β-Lactamases Associated with Carbapenem Resistance in Clinical Isolates of Acinetobacter baumannii , 2001, Antimicrobial Agents and Chemotherapy.

[120]  A. Oliver,et al.  OXA-24, a Novel Class D β-Lactamase with Carbapenemase Activity in an Acinetobacter baumanniiClinical Strain , 2000, Antimicrobial Agents and Chemotherapy.

[121]  S. Amyes,et al.  Sequence Analysis of ARI-1, a Novel OXA β-Lactamase, Responsible for Imipenem Resistance inAcinetobacter baumannii 6B92 , 2000, Antimicrobial Agents and Chemotherapy.

[122]  P. Nordmann,et al.  OXA-type beta-lactamases. , 1999, Current pharmaceutical design.

[123]  T. Naas,et al.  OXA-Type β-Lactamases , 1999, Current Pharmaceutical Design.

[124]  D. F. Sahm,et al.  AmpC beta-lactamases. , 1998 .

[125]  J. Soothill Treatment of experimental infections of mice with bacteriophages. , 1992, Journal of medical microbiology.

[126]  P. Higgins,et al.  In-vitro activity of the novel fluorocycline eravacycline against carbapenem non-susceptible Acinetobacter baumannii. , 2018, International journal of antimicrobial agents.

[127]  M. Dekhil,et al.  Characterization of carbapenem resistant Acinetobacter baumannii isolated from intensive care units in two teaching hospitals from Algeria and Tunisia , 2017 .

[128]  Ş. Çavuşlu,et al.  Investigation of Metallo Beta Lactamases and Oxacilinases in Carbapenem Resistant Acinetobacter baumannii Strains Isolated from Inpatients. , 2015, Balkan medical journal.

[129]  Subir Kundu,et al.  The Battle Against Microbial Pathogens : Basic Science , Technological Advances and Educational Programs , 2015 .

[130]  Hyungyeul Joo FSI-1671, a Novel Anti-Acinetobacter Car bapenem; In Vivo Efficacy against Carbapenem-Resistance Gram-Negative Bacterial Infection , 2013 .

[131]  H. Nikaido Structure and mechanism of RND-type multidrug efflux pumps. , 2011, Advances in enzymology and related areas of molecular biology.

[132]  B. Zechini,et al.  Inhibitors of multidrug resistant efflux systems in bacteria. , 2009, Recent patents on anti-infective drug discovery.

[133]  Li Lin,et al.  Distribution of the multidrug efflux pump genes, adeABC, adeDE and adeIJK, and class 1 integron genes in multiple-antimicrobial-resistant clinical isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus complex. , 2009, International journal of antimicrobial agents.

[134]  R. Weinstein,et al.  Acinetobacter infection. , 2008, The New England journal of medicine.

[135]  T. Walsh The emergence and implications of metallo-β-lactamases in Gram-negative bacteria , 2005 .

[136]  S. Amyes,et al.  Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina. , 2005, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[137]  S. Amyes,et al.  OXA b-lactamases in Acinetobacter: the story so far , 2005 .

[138]  W. Opferkuch,et al.  Imipenem resistance in Acinetobacter baumanii is due to altered penicillin-binding proteins. , 1991, Chemotherapy.