Fast Marching Techniques for Image Segmentation

A new region growing method is proposed for segmenting images. The region boundaries are formulated as level sets and the pixel labeling process is implemented using a new multi-label fast marching algorithm. The region contours are propagated with a velocity proportional to the a posteriori probability of the respective label. Statistical tests are performed to generate the initially labeled sets. Any image feature, given it is semantically relevant, can be considered for the segmentation process. Illustrations are given for combined luminance, chrominance and texture classi cation and segmentation in natural scenes. Moving object extraction based on change detection is also considered, which is performed as a two-label classi cation.

[1]  Josiane Zerubia,et al.  A Level Set Model for Image Classification , 1999, International Journal of Computer Vision.

[2]  Christopher M. Brown,et al.  The theory and practice of Bayesian image labeling , 1990, International Journal of Computer Vision.

[3]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[4]  Georgios Tziritas,et al.  Bayesian Level Sets for Image Segmentation , 2002, J. Vis. Commun. Image Represent..

[5]  Rachid Deriche,et al.  Geodesic Active Regions: A New Framework to Deal with Frame Partition Problems in Computer Vision , 2002, J. Vis. Commun. Image Represent..

[6]  Anthony J. Yezzi,et al.  A Fully Global Approach to Image Segmentation via Coupled Curve Evolution Equations , 2002, J. Vis. Commun. Image Represent..

[7]  Georgios Tziritas,et al.  Video Segmentation Using Fast Marching and Region Growing Algorithms , 2002, EURASIP J. Adv. Signal Process..

[8]  Philippe Salembier,et al.  Overview of the MPEG-7 Standard and of Future Challenges for Visual Information Analysis , 2002, EURASIP J. Adv. Signal Process..

[9]  Georgios Tziritas,et al.  Moving object localisation using a multi-label fast marching algorithm , 2001, Signal Process. Image Commun..

[10]  Georgios Tziritas,et al.  Color and/or texture segmentation using deterministic relaxation and fast marching algorithms , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[11]  Georgios Tziritas,et al.  Fast Marching to Moving Object Location , 1999, Scale-Space.

[12]  Tony F. Chan,et al.  An Active Contour Model without Edges , 1999, Scale-Space.

[13]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[14]  Michael Isard,et al.  Active Contours , 2000, Springer London.

[15]  Thomas Sikora,et al.  The MPEG-4 video standard verification model , 1997, IEEE Trans. Circuits Syst. Video Technol..

[16]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Geoffrey J. McLachlan,et al.  Maximum likelihood clustering via normal mixture models , 1996, Signal Process. Image Commun..

[18]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[20]  R. Kimmel,et al.  Geodesic Active Contours , 1995, Proceedings of IEEE International Conference on Computer Vision.

[21]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[24]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[25]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[26]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  R. DeMori,et al.  Handbook of pattern recognition and image processing , 1986 .

[28]  T. Pavlidis Algorithms for Graphics and Image Processing , 1981, Springer Berlin Heidelberg.

[29]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.