Molecular evidence for life in the 3.5 billion year old Warrawoona chert

[1]  J. Farquhar,et al.  Early Archaean Microorganisms Preferred Elemental Sulfur, Not Sulfate , 2007, Science.

[2]  C. Marshall,et al.  Structural characterization of kerogen in 3.4 Ga Archaean cherts from the Pilbara Craton, Western Australia , 2007 .

[3]  C. Marshall,et al.  Characterization of c.3.5 billion-year-old organic matter , 2006 .

[4]  F. Robert,et al.  A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts , 2006, Nature.

[5]  Abigail C. Allwood,et al.  Stromatolite reef from the Early Archaean era of Australia , 2006, Nature.

[6]  D. Lowe,et al.  The origin of carbonaceous matter in pre-3.0 Ga greenstone terrains: A review and new evidence from the 3.42 Ga Buck Reef Chert , 2006 .

[7]  T. Sharp,et al.  The structure and distribution of carbon in 3.5 Ga Apex chert: Implications for the biogenicity of Earth`s oldest putative microfossils , 2006 .

[8]  J. Seewald,et al.  Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions , 2006 .

[9]  M. V. Kranendonk Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: A review of the evidence from c. 3490-3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia , 2006 .

[10]  S. Derenne,et al.  New insight on aliphatic linkages in the macromolecular organic fraction of Orgueil and Murchison meteorites through ruthenium tetroxide oxidation , 2005 .

[11]  S. Derenne,et al.  New pyrolytic and spectroscopic data on Orgueil and Murchison insoluble organic matter: A different origin than soluble? , 2005 .

[12]  J. Rouzaud,et al.  The High Resolution Transmission Electron Microscopy: A Powerful Tool for Studying the Organization of Terrestrial and Extra-Terrestrial Carbons , 2005 .

[13]  C. Snape,et al.  Hydropyrolysis of insoluble carbonaceous matter in the Murchison meteorite , 2004 .

[14]  Yanan Shen,et al.  The antiquity of microbial sulfate reduction , 2004 .

[15]  Roger E. Summons,et al.  Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia , 2003 .

[16]  M. V. Kranendonk,et al.  Self-Assembled Silica-Carbonate Structures and Detection of Ancient Microfossils , 2003, Science.

[17]  S. Derenne,et al.  Origin of compositional differences in organic matter abundance and oil potential of cherty and clayey Cenomanian black levels in the Umbria-Marche basin (Italy) , 2003 .

[18]  Y. Kato Origin and global tectonic significance of Early Archean cherts from the Marble Bar greenstone belt, Pilbara Craton, Western Australia , 2003 .

[19]  C. Snape,et al.  Release of bound aromatic hydrocarbons from late Archean and mesoproterozoic kerogens via hydropyrolysis , 2003 .

[20]  T. McCollom Formation of meteorite hydrocarbons from thermal decomposition of siderite (FeCO3) , 2003 .

[21]  J. Pasteris,et al.  Laser–Raman spectroscopy (Communication arising): Images of the Earth's earliest fossils? , 2002, Nature.

[22]  Aivo Lepland,et al.  Reassessing the evidence for the earliest traces of life , 2002, Nature.

[23]  M. V. Kranendonk,et al.  Geology and Tectonic Evolution of the Archean North Pilbara Terrain,Pilbara Craton, Western Australia , 2002 .

[24]  J. Rouzaud,et al.  Quantitative high-resolution transmission electron microscopy: a promising tool for carbon materials characterization , 2002 .

[25]  A. Steele,et al.  Questioning the evidence for Earth's oldest fossils , 2002, Nature.

[26]  T. Wdowiak,et al.  Laser–Raman imagery of Earth's earliest fossils , 2002, Nature.

[27]  A. Rushdi,et al.  Lipid Formation by Aqueous Fischer-Tropsch-Type Synthesis over a Temperature Range of 100 to 400 °C , 2001, Origins of life and evolution of the biosphere.

[28]  Manfred Schidlowski,et al.  Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept , 2001 .

[29]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[30]  J. Horita,et al.  Abiogenic methane formation and isotopic fractionation under hydrothermal conditions , 1999, Science.

[31]  F. Robert,et al.  Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? , 1999 .

[32]  K. D. McKeegan,et al.  Evidence for life on Earth before 3,800 million years ago , 1996, Nature.

[33]  J. Schopf,et al.  Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.

[34]  J. Damsté,et al.  Organic sulphur in macromolecular sedimentary organic matter: I. Structure and origin of sulphur-containing moieties in kerogen, asphaltenes and coal as revealed by flash pyrolysis , 1989 .

[35]  G. Vidal Earth's Earliest Biosphere , 1985 .

[36]  G. Maciel,et al.  Nuclear Magnetic Resonance: A Technique for Direct Nondestructive Evaluation of Source-Rock Potential , 1982 .

[37]  K. Arndt,et al.  Chemistry and Biochemistry of Natural Waxes , 1977 .

[38]  E. E. Bray,et al.  Distribution of n-paraffins as a clue to recognition of source beds , 1961 .

[39]  J. William Schopf,et al.  Earth's earliest biosphere : its origin and evolution , 1983 .

[40]  P. Kolattukudy Chemistry and biochemistry of natural waxes , 1976 .