Zig-Zag effect without degrees of freedom in linear and non linear analysis of laminated plates and shells

Abstract Without adding new degrees of freedom, this paper presents a new finite element formulation that combines three important ingredients for precise analysis of displacements and transverse stresses in laminated shells and plates, namely: (i) Presence of Zig-Zag effect, (ii) regularization of transverse stresses in order to guaranty their continuity and (iii) cinematically exact description in FEM nonlinear geometric formulation. The accuracy of the proposed formulation in both displacements and stresses will be proven by comparing results with linear elastic benchmarks of literature. Furthermore, the possibilities of the formulation are shown by solving an extreme geometric nonlinear problem of orthotropic laminated shells, considering results in displacements and stresses.

[1]  H. B. Coda,et al.  A POSITIONAL FEM FORMULATION FOR GEOMETRICAL NON-LINEAR ANALYSIS OF SHELLS , 2008 .

[2]  Yavuz Başar,et al.  Refined shear-deformation models for composite laminates with finite rotations , 1993 .

[3]  Gennady M. Kulikov,et al.  Geometrically exact assumed stress–strain multilayered solid-shell elements based on the 3D analytical integration , 2006 .

[4]  M. Fares,et al.  A layerwise theory for Nth-layer functionally graded plates including thickness stretching effects , 2015 .

[5]  N. Pagano,et al.  Exact Solutions for Composite Laminates in Cylindrical Bending , 1969 .

[6]  Hung Nguyen-Xuan,et al.  Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS‐based isogeometric approach , 2012 .

[7]  H. B. Coda,et al.  An Alternative Positional FEM Formulation for Geometrically Non-linear Analysis of Shells: Curved Triangular Isoparametric Elements , 2007 .

[8]  M.Kh. Elmarghany,et al.  A refined zigzag nonlinear first-order shear deformation theory of composite laminated plates , 2008 .

[9]  Daniel J. Inman,et al.  A C1 finite element capable of interlaminar stress continuity , 2001 .

[10]  H. B. Coda Continuous inter-laminar stresses for regular and inverse geometrically non linear dynamic and static analyses of laminated plates and shells , 2015 .

[11]  E. Carrera,et al.  A radial basis functions solution for the analysis of laminated doubly-curved shells by a Reissner-Mixed Variational Theorem , 2016 .

[12]  Ireneusz Kreja,et al.  A literature review on computational models for laminated composite and sandwich panels , 2011 .

[13]  J. N. Reddy,et al.  On refined computational models of composite laminates , 1989 .

[14]  K. Y. Sze,et al.  An eight‐node hybrid‐stress solid‐shell element for geometric non‐linear analysis of elastic shells , 2002 .

[15]  Ekkehard Ramm,et al.  Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates , 1994 .

[16]  Erasmo Carrera,et al.  Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 1: Derivation of finite element matrices , 2002 .

[17]  Gennady M. Kulikov,et al.  Non-linear geometrically exact assumed stress-strain four-node solid-shell element with high coarse-mesh accuracy , 2007 .

[18]  E. Carrera Historical review of Zig-Zag theories for multilayered plates and shells , 2003 .

[19]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[20]  Erasmo Carrera,et al.  Multilayered Finite Plate Element based on Reissner Mixed Variational Theorem. Part II: Numerical Analysis, , 2002 .

[21]  A. Rao,et al.  Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates , 1970 .

[22]  J. N. Reddy,et al.  A plate bending element based on a generalized laminate plate theory , 1988 .

[23]  I. Babuska,et al.  Stress computations for nearly incompressible materials by the p‐version of the finite element method , 1989 .

[24]  Maria Cinefra,et al.  A variable kinematic doubly-curved MITC9 shell element for the analysis of laminated composites , 2016 .

[25]  Chahngmin Cho,et al.  An efficient assumed strain element model with six DOF per node for geometrically non‐linear shells , 1995 .

[26]  Ugo Icardi,et al.  Numerical assessment of the core deformability effect on the behavior of sandwich beams , 1999 .

[27]  Chih‐Ping Wu,et al.  A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells , 2016 .

[28]  E. Ramm,et al.  Shear deformable shell elements for large strains and rotations , 1997 .

[29]  L. Vu-Quoc,et al.  Efficient Hybrid-EAS solid element for accurate stress prediction in thick laminated beams, plates, and shells , 2013 .

[30]  Hung-Sying Jing,et al.  Partial hybrid stress element for the analysis of thick laminated composite plates , 1989 .

[31]  X. G. Tan,et al.  Optimal solid shells for non-linear analyses of multilayer composites. II. Dynamics , 2003 .

[32]  Erasmo Carrera,et al.  A unified formulation to assess theories of multilayered plates for various bending problems , 2005 .

[33]  Dimitris A. Saravanos,et al.  Higher-order layerwise laminate theory for the prediction of interlaminar shear stresses in thick composite and sandwich composite plates , 2009 .

[34]  E. Carrera,et al.  MITC9 shell finite elements with miscellaneous through-the-thickness functions for the analysis of laminated structures , 2016 .

[35]  Humberto Breves Coda,et al.  Positional description applied to the solution of geometrically non-linear plates and shells. , 2013 .

[36]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[37]  Siamak Noroozi,et al.  The development of laminated composite plate theories: a review , 2012, Journal of Materials Science.

[38]  R. D. Wood,et al.  Finite element analysis of air supported membrane structures , 2000 .

[39]  H. B. Coda,et al.  A geometrically nonlinear FEM formulation for the analysis of fiber reinforced laminated plates and shells , 2015 .

[40]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[41]  Robert L. Spilker,et al.  Hybrid-stress isoparametric elements for moderately thick and thin multilayer plates , 1986 .

[42]  Satya N. Atluri,et al.  A Meshless Local Petrov-Galerkin Method for Solving the Bending Problem of a Thin Plate , 2002 .

[43]  H. B. Coda,et al.  Continuous stress distribution following transverse direction for FEM orthotropic laminated plates and shells , 2016 .

[44]  Ted Belytschko,et al.  Analysis of thin plates by the element-free Galerkin method , 1995 .

[45]  C. T. Sun,et al.  A three-dimensional hybrid stress isoparametric element for the analysis of laminated composite plates , 1987 .