Callosal Function in Multiple Sclerosis: Bimanual Motor Coordination

Evidence of callosal dysfunction in patients with multiple sclerosis (MS) was examined using a test of bimanual coordination. MS patients were slower than non-patients on the Bimanual Coordination Test (BCT) on both unimanual trials (simple motor speed) and bimanual trials (intermanual coordination). Further, when compared to normals, MS patients exhibited a substantially greater difference between bimanual and unimanual response time, suggesting a deficit in interhemispheric motor interactions. A subgroup of MS subjects who showed markedly inefficient callosal transmission had previously been identified on the basis of abnormal evoked potentials (low amplitude cross-callosal evoked potentials). In comparisons of MS subgroups, the deficit in bimanual motor coordination was found only in MS patients with EP evidence of inefficient callosal transmission. These data support the conclusion that deficits in bimanual motor coordination occur in MS and that these deficits are related to callosal dysfunction.

[1]  B. Preilowski,et al.  Possible contribution of the anterior forebrain commissures to bilateral motor coordination. , 1972, Neuropsychologia.

[2]  J Pelletier,et al.  [Interhemispheric transfer in multiple sclerosis. Morphofunctional correlations]. , 1992, Revue neurologique.

[3]  V. Haughton,et al.  Correlation of magnetic resonance imaging with neuropsychological testing in multiple sclerosis , 1989, Neurology.

[4]  E. Kunesch,et al.  Demyelination and axonal degeneration in corpus callosum assessed by analysis of transcallosally mediated inhibition in multiple sclerosis , 1999, Clinical Neurophysiology.

[5]  W. Brown,et al.  Bilateral field interactions, hemispheric specialization and evoked potential interhemispheric transmission time , 1997, Neuropsychologia.

[6]  S. Folstein,et al.  "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. , 1975, Journal of psychiatric research.

[7]  R. Binggeli,et al.  Interhemispheric transmission: assessment with vibratory somatosensory evoked potentials. , 1985, The International journal of neuroscience.

[8]  B. Preilowski,et al.  Bilateral Motor Interaction: Perceptual-Motor Performance of Partial and Complete “Split-Brain” Patients , 1975 .

[9]  R. Davidson,et al.  Anomalous bimanual coordination among dyslexic boys. , 1989 .

[10]  C. Daumas-Duport,et al.  Dementia in two histologically confirmed cases of multiple sclerosis: one case with isolated dementia and one case associated with psychiatric symptoms. , 1994, Journal of neurology, neurosurgery, and psychiatry.

[11]  G. Goldstein,et al.  NEUROPSYCHOLOGICAL DIAGNOSIS OF MULTIPLE SCLEROSIS IN A NEUROPSYCHIATRIC SETTING , 1974, The Journal of nervous and mental disease.

[12]  A. Salamy,et al.  Commissural transmission: maturational changes in humans. , 1978, Science.

[13]  Development of visuomotor coordination in school‐age children: The bimanual coordination test , 1995 .

[14]  The sensitivity of multimodal evoked potentials in multiple sclerosis. A comparison with magnetic resonance imaging and cerebrospinal fluid analysis. , 1988, Electroencephalography and clinical neurophysiology.

[15]  M. Jeeves,et al.  Role of the corpus callosum in the development of a bimanual motor skill , 1988 .

[16]  Malcolm A. Jeeves,et al.  Bilateral visual field processing and evoked potential interhemispheric transmission time , 1993, Neuropsychologia.

[17]  C. Pozzilli,et al.  Anterior Corpus Callosum Atrophy and Verbal Fluency in Multiple Sclerosis , 1991, Cortex.

[18]  M. Jeeves,et al.  Bilateral field advantage and evoked potential interhemispheric transmission in commissurotomy and callosal agenesis , 1999, Neuropsychologia.

[19]  K. Baum,et al.  Alternate finger tapping test in patients with migraine , 1997, Acta neurologica Scandinavica.

[20]  A. Milner,et al.  Visual evoked potentials to lateralized visual stimuli and the measurement of interhemispheric transmission time , 1984, Neuropsychologia.

[21]  M. Filippi,et al.  Correlation between multimodal evoked potentials and magnetic resonance imaging in multiple sclerosis , 2004, Journal of Neurology.

[22]  J. Andreassi,et al.  Hemispheric asymmetries in the visual cortical evoked potential as a function of stimulus location. , 1975, Psychophysiology.

[23]  W. Brown,et al.  Callosal Transfer of Finger Localization Information in Phonologically Dyslexic Adults , 1996, Cortex.

[24]  J. Kurtzke Rating neurologic impairment in multiple sclerosis , 1983, Neurology.

[25]  S. Röricht,et al.  Conduction deficits of callosal fibres in early multiple sclerosis , 2000, Journal of neurology, neurosurgery, and psychiatry.

[26]  M. D. Rugg,et al.  The effect of stimulus intensity on visual evoked potential estimates of interhemispheric transmission time , 2004, Experimental Brain Research.

[27]  A. Rubens,et al.  Left ear suppression on verbal dichotic tests in patients with multiple sclerosis , 1985, Annals of neurology.

[28]  M. R. Seitz,et al.  An AER analysis of contralateral advantage in the transmission of auditory information , 1977, Neuropsychologia.

[29]  R. McGhee,et al.  Magnetic resonance imaging correlates of neuropsychological impairment in multiple sclerosis. , 1992, The Journal of neuropsychiatry and clinical neurosciences.

[30]  M. Jeeves,et al.  Directional asymmetries in interhemispheric transmission time: Evidence from visual evoked potentials , 1994, Neuropsychologia.

[31]  J. Noth,et al.  Interhemispheric inhibition in patients with multiple sclerosis. , 1998, Electroencephalography and clinical neurophysiology.

[32]  C. Pozzilli,et al.  Cognitive and brain imaging measures of multiple sclerosis. , 1992, Italian journal of neurological sciences.

[33]  S. Rao,et al.  Information processing speed in patients with multiple sclerosis. , 1989, Journal of clinical and experimental neuropsychology.

[34]  G. Wildschiødtz,et al.  Alteration of interhemisphere conduction through corpus callosum in chronic schizophrenia. , 1982, Biological psychiatry.

[35]  D. Benson,et al.  Callosal disconnection in multiple sclerosis , 1993, Neurology.

[36]  H. Liepmann,et al.  Fall von linksseitiger Agraphie und Apraxie bei rechtseitiger Lahmung , 1907 .

[37]  M. Tsolaki,et al.  Correlation of dementia, neuropsychological and MRI findings in multiple sclerosis. , 1994, Dementia.

[38]  P. A. Beatty,et al.  NEUROPSYCHOLOGICAL ASPECTS OF MULTIPLE SCLEROSIS , 1977, The Journal of nervous and mental disease.

[39]  A. Milner,et al.  Further investigation of visual evoked potentials elicited by lateralized stimuli: effects of stimulus eccentricity and reference site. , 1985, Electroencephalography and clinical neurophysiology.

[40]  J. Beaumont Divided visual field studies of cerebral organisation , 1982 .

[41]  K. Hugdahl,et al.  Dichotic listening performance in relation to callosal area on the MRI scan. , 1994 .

[42]  C. Best Hemispheric function and collaboration in the child , 1985 .

[43]  M. Poncet,et al.  Functional and magnetic resonance imaging correlates of callosal involvement in multiple sclerosis. , 1993, Archives of neurology.

[44]  T. J. Murray,et al.  Dichotic Paradigms in Multiple Sclerosis , 1983, Ear and hearing.

[45]  L. Ketonen,et al.  Magnetic resonance imaging, evoked responses and cerebrospinal fluid findings in a follow‐up study of children with optic neuritis , 1988, Acta neurologica Scandinavica.

[46]  S. Rao,et al.  Cerebral disconnection in multiple sclerosis. Relationship to atrophy of the corpus callosum. , 1989, Archives of neurology.

[47]  M. Kinsbourne,et al.  Differences in reaction times and average evoked potentials as a function of direct and indirect neural pathways , 1978, Annals of neurology.

[48]  Gary C. Galbraith,et al.  Interhemispheric Transfer in Normals and Acallosals: Latency Adjusted Evoked Potential Averaging , 1998, Cortex.