Neural networks, learning automata and iterated function systems

An overview is given of certain underlying relationships between neural networks and Iterated Function Systems. Possible applications to data compression and stochastic learning automata are discussed.

[1]  K. Falconer The geometry of fractal sets: Contents , 1985 .

[2]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[3]  Michael F. Barnsley,et al.  A better way to compress images , 1988 .

[4]  Valerie Isham,et al.  Non‐Negative Matrices and Markov Chains , 1983 .

[5]  P. Anandan,et al.  Pattern-recognizing stochastic learning automata , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  M. Norman Some convergence theorems for stochastic learning models with distance diminishing operators , 1968 .

[7]  S. Lakshmivarahan,et al.  Learning Algorithms Theory and Applications , 1981 .

[8]  Jaroslav Stark Iterated Function Systems as neural networks , 1991, Neural Networks.

[9]  P. Erdös On a Family of Symmetric Bernoulli Convolutions , 1939 .

[10]  K. Falconer The geometry of fractal sets , 1985 .

[11]  H. Fédérer Geometric Measure Theory , 1969 .

[12]  J. Elton An ergodic theorem for iterated maps , 1987, Ergodic Theory and Dynamical Systems.

[13]  Taylor,et al.  Random iterative networks. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[14]  S. F. Reddaway Fractal graphics and image compression on a DAP , 1988 .

[15]  Kumpati S. Narendra,et al.  Learning Automata - A Survey , 1974, IEEE Trans. Syst. Man Cybern..

[16]  M. Barnsley,et al.  Invariant measures for Markov processes arising from iterated function systems with place-dependent , 1988 .

[17]  S. Karlin Some random walks arising in learning models. I. , 1953 .