Letter. Densified glasses as structural proxies for high-pressure melts: Configurational compressibility of silicate melts retained in quenched and decompressed glasses

Abstract The structures of high-pressure magmatic liquids have often been inferred from spectroscopic studies on quenched and decompressed glasses. However, it has not been completely verified whether the structures of quenched and decompressed glasses are representative of the structure of their corresponding liquids at the glass transition temperature and synthesis pressure. Here, we provide quantitative evidence for the retention of pressure-induced configurational changes upon isobaric quench and isothermal decompression for synthesis pressures up to 3.5 GPa. We use the degree of densification and elastic compressibility of permanently densified glasses, together with thermo-elastic data from the literature, to calculate the density of the melt at the glass transition temperature and synthesis pressure. The derived densities agree with those derived directly from the thermal equations of state of the melts. This observation indicates that, at least up to 3.5 GPa, the densified structure of the melt is preserved in the glass upon quenching and decompression; this validates past and future structural studies of high-pressure melts based on studies of quenched and decompressed glasses.

[1]  R. Seifert,et al.  Supervolcano eruptions driven by melt buoyancy in large silicic magma chambers , 2014 .

[2]  R. Seifert,et al.  Partial molar volume and compressibility of dissolved CO2 in glasses with magmatic compositions , 2013 .

[3]  R. Seifert,et al.  Density of phonolitic magmas and time scales of crystal fractionation in magma chambers , 2013 .

[4]  G. Cody,et al.  Effect of Network Polymerization on the Pressure-Induced Structural Changes in Sodium Aluminosilicate Glasses and Melts: 27Al and 17O Solid-State NMR Study , 2012 .

[5]  W. Malfait,et al.  Aluminum coordination in rhyolite and andesite glasses and melts: Effect of temperature, pressure, composition and water content , 2012 .

[6]  Sung Keun Lee,et al.  Simplicity in melt densification in multicomponent magmatic reservoirs in Earth’s interior revealed by multinuclear magnetic resonance , 2011, Proceedings of the National Academy of Sciences.

[7]  G. Gatta,et al.  Single-crystal elastic properties of (Cs,Na)AlSi2O6⋅H2O pollucite: A zeolite with potential use for long-term storage of Cs radioisotopes , 2010 .

[8]  Sung Keun Lee,et al.  Effect of pressure on structure of oxide glasses at high pressure: Insights from solid-state NMR of quadrupolar nuclides. , 2010, Solid state nuclear magnetic resonance.

[9]  J. Bass,et al.  Elasticity and pressure-induced structural changes in vitreous MgSiO3-enstatite to lower mantle pressures , 2010 .

[10]  C. Lesher,et al.  Densification of MgSiO 3 glass with pressure and temperature , 2010 .

[11]  C. Benmore,et al.  Structural and topological changes in silica glass at pressure. , 2010 .

[12]  E. Ohtani,et al.  Density of dry peridotite magma at high pressure using an X-ray absorption method , 2010 .

[13]  P. Asimow,et al.  Simultaneous aluminum, silicon, and sodium coordination changes in 6 GPa sodium aluminosilicate glasses , 2009 .

[14]  P. Asimow,et al.  Cation field strength effects on high pressure aluminosilicate glass structure: Multinuclear NMR and La XAFS results , 2009 .

[15]  S. Shim,et al.  Compositional dependence of structural transition pressures in amorphous phases with mantle-related compositions , 2009 .

[16]  C. Lesher,et al.  Densification of MgSiO3 glass with pressure and temperature , 2009 .

[17]  Tomoko Sato,et al.  Sixfold-coordinated amorphous polymorph of SiO2 under high pressure. , 2008, Physical review letters.

[18]  W. Malfait,et al.  Amorphous materials: Properties, structure, and durability: Quantitative Raman spectroscopy: Speciation of Na-silicate glasses and melts , 2008 .

[19]  D. Dingwell,et al.  Viscosity of magmatic liquids: A model , 2008 .

[20]  H. Mao,et al.  X-ray Raman scattering study of MgSiO3 glass at high pressure: Implication for triclustered MgSiO3 melt in Earth's mantle , 2008, Proceedings of the National Academy of Sciences.

[21]  S. Sen,et al.  Pressure-induced structural changes and densification of vitreous MgSiO3 , 2008 .

[22]  J. Stebbins,et al.  Temperature effects on non-bridging oxygen and aluminum coordination number in calcium aluminosilicate glasses and melts , 2008 .

[23]  C. Martinet,et al.  High pressure elastic and plastic deformations of silica: In situ diamond anvil cell Raman experiments , 2008 .

[24]  W. Malfait,et al.  Structural relaxation in silicate glasses and melts : High-temperature Raman spectroscopy , 2008 .

[25]  Wim,et al.  Quantitative Raman spectroscopy : Speciation of Na-silicate glasses and melts , 2008 .

[26]  H. Terasaki,et al.  Effect of structural transitions on properties of high-pressure silicate melts: 27Al NMR, glass densities, and melt viscosities , 2007 .

[27]  A. Trave,et al.  Electronic bonding transition in compressed SiO2 glass , 2007 .

[28]  R. Youngman,et al.  Ex situ XRD, TEM, IR, Raman and NMR spectroscopy of crystallization of lithium disilicate glass at high pressure , 2006 .

[29]  K. D. Jayasuriya,et al.  An experimental determination of the effect of pressure on the Fe3+/ΣFe ratio of an anhydrous silicate melt to 3.0 GPa , 2006 .

[30]  J. Stebbins,et al.  Letter. The effect of Fictive temperature on Al coordination in high-pressure (10 GPa) sodium aluminosilicate glasses , 2005 .

[31]  M. Manghnani,et al.  Compressibility of hydrated and anhydrous Na2O-2SiO2 liquid and also glass to 8 GPa using Brillouin scattering , 2005 .

[32]  M. Hirschmann,et al.  Letter. Aluminum coordination and the densification of high-pressure aluminosilicate glasses , 2005 .

[33]  G. Cody,et al.  Nature of polymerization and properties of silicate melts and glasses at high pressure , 2004 .

[34]  L. Du,et al.  Pressure-induced structural changes in a borosilicate glass-forming liquid: boron coordination, non-bridging oxygens, and network ordering , 2004 .

[35]  S. Lee Structure of Silicate Glasses and Melts at High Pressure: Quantum Chemical Calculations and Solid-State NMR , 2004 .

[36]  H. Behrens,et al.  Quantification of H2O Speciation in Silicate Glasses and Melts by IR Spectroscopy - in situ versus Quench Techniques , 2003 .

[37]  A. Whittington,et al.  Partial molar volume of water in phonolitic glasses and liquids , 2001 .

[38]  J. Stebbins,et al.  Pentacoordinate silicon in high‐pressure crystalline and glassy phases of calcium disilicate (CaSi2O5) , 1999 .

[39]  M. Gillan,et al.  The structure of iron under the conditions of the Earth's inner core , 1999 .

[40]  R. Lange,et al.  The Density of Hydrous Magmatic Liquids. , 1999, Science.

[41]  D. Farber,et al.  An in situ Raman spectroscopic study of Na2Si2O5 at high pressures and temperatures: Structures of compressed liquids and glasses , 1996 .

[42]  J. Yarger,et al.  Al Coordination Changes in High-Pressure Aluminosilicate Liquids , 1995, Science.

[43]  R. Secco,et al.  Pressure induced coordination change of Al in silicate melts from Al K edge XANES of high pressure NaAlSi2O6‐NaAlSi3O8 glasses , 1995 .

[44]  P. McMillan,et al.  Vibrational spectroscopy of silicate liquids , 1995 .

[45]  Zha,et al.  Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. , 1994, Physical review. B, Condensed matter.

[46]  I. Farnan,et al.  The Nature of the Glass Transition in a Silica-Rich Oxide Melt , 1994, Science.

[47]  B. Mysen,et al.  Silicate melts at magmatic temperatures: in-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units , 1994 .

[48]  J. Stebbins,et al.  Correlations between 17O NMR parameters and local structure around oxygen in high-pressure silicates: Implications for the structure of silicate melts at high pressure , 1994 .

[49]  D. Dingwell,et al.  Pressure-induced coordination change of Ti in silicate glass: a XANES study , 1994 .

[50]  P. Richet,et al.  Elastic properties of diopside, anorthite, and grossular glasses and liquids: A Brillouin scattering study up to 1400 K , 1993 .

[51]  P. McMillan,et al.  A spectroscopic investigation of anhydrous KAlSi3O8 and NaAlSi3O8 glasses quenched from high pressure , 1993 .

[52]  A. Bianconi,et al.  Structure of densified vitreous silica: Silicon and oxygen XANES spectra and multiple scattering calculations , 1992 .

[53]  Mao,et al.  High-pressure x-ray diffraction of SiO2 glass. , 1992, Physical review letters.

[54]  D. Neuville,et al.  Thermodynamics of silicate melts : configurational properties , 1992 .

[55]  P. McMillan,et al.  Pressure-induced silicon coordination and tetrahedral structural changes in alkali oxide-silica melts up to 12 GPa: NMR, Raman, and infrared spectroscopy , 1991 .

[56]  I. Farnan,et al.  Observation of slow atomic motions close to the glass transition using 2-D 29Si NMR , 1990 .

[57]  J. Stebbins,et al.  The structure of NaAlSi 3 O 8 liquid at high pressure; new constraints from NMR spectroscopy , 1990 .

[58]  J. Stebbins,et al.  Silicon Coordination and Speciation Changes in a Silicate Liquid at High Pressures. , 1990 .

[59]  D. Dingwell,et al.  Relaxation in silicate melts , 1990 .

[60]  J. Stebbins,et al.  Silicon Coordination and Speciation Changes in a Silicate Liquid at High Pressures , 1989, Science.

[61]  P. McMillan,et al.  Five- and six-coordinated Si in K2Si4O9 glass quenched from 1.9 GPa and 1200 °C , 1989 .

[62]  J. Stebbins,et al.  Effects of temperature on the structures of silicate liquids: 29Si NMR results , 1988 .

[63]  R. Jeanloz,et al.  Spectroscopic Evidence for Pressure-Induced Coordination Changes in Silicate Glasses and Melts , 1988, Science.

[64]  Bell,et al.  Raman spectroscopy of SiO2 glass at high pressure. , 1986, Physical review letters.

[65]  M. Hochella,et al.  The structures of albite and jadeite composition glasses quenched from high pressure , 1985 .

[66]  E. D. Crozier,et al.  Coordination of Fe, Ga and Ge in high pressure glasses by Mössbauer, Raman and X-ray absorption spectroscopy, and geological implications , 1984 .

[67]  B. Velde,et al.  Structure of sodium alumino-silicate melts quenched at high pressure; infrared and aluminum K-radiation data , 1978 .

[68]  Gene Simmons,et al.  Thermal expansion behavior of igneous rocks , 1974 .

[69]  R. Maurer Pressure Effects in the Transformation Range of Glass , 1957 .

[70]  A. Q. Tool,et al.  RELATION BETWEEN INELASTIC DEFORMABILITY AND THERMAL EXPANSION OF GLASS IN ITS ANNEALING RANGE , 1946 .

[71]  R. Cooks,et al.  SPECTROSCOPIC INVESTIGATION. , 1918, Science.