The norepinephrine transporter (NET) radioligand (S,S)-[18F]FMeNER-D2 shows significant decreases in NET density in the human brain in Alzheimer's disease: A post-mortem autoradiographic study

[1]  G. Münch,et al.  Activated astrocytes: a therapeutic target in Alzheimer’s disease? , 2009, Expert review of neurotherapeutics.

[2]  Michael Kassiou,et al.  Radiolabelled molecules for imaging the translocator protein (18 kDa) using positron emission tomography. , 2009, Current medicinal chemistry.

[3]  Christer Halldin,et al.  Comparative evaluations of norepinephrine transporter radioligands with reference tissue models in rhesus monkeys: (S,S)-[18F]FMeNER-D2 and (S,S)-[11C]MeNER , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[4]  Bengt Långström,et al.  [11C]PIB-amyloid binding and levels of Aβ40 and Aβ42 in postmortem brain tissue from Alzheimer patients , 2009, Neurochemistry International.

[5]  R. P. Maguire,et al.  Saturated norepinephrine transporter occupancy by atomoxetine relevant to clinical doses: a rhesus monkey study with (S,S)-[18F]FMeNER-D2 , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[6]  Jose Julio Rodriguez,et al.  Astroglia in dementia and Alzheimer's disease , 2009, Cell Death and Differentiation.

[7]  B. Gulyás,et al.  A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system , 2009, Neurochemistry International.

[8]  Johannes T. Tauscher,et al.  Mapping of the norepinephrine transporter in the human brain using PET with (S,S)-[18F]FMeNER-D2 , 2008, NeuroImage.

[9]  Hidehiko Takahashi,et al.  Quantitative Analysis of Norepinephrine Transporter in the Human Brain Using PET with (S,S)-18F-FMeNER-D2 , 2008, Journal of Nuclear Medicine.

[10]  Agneta Nordberg,et al.  Amyloid imaging in Alzheimer's disease , 2008, Neuropsychologia.

[11]  Ming-Kai Chen,et al.  Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. , 2008, Pharmacology & therapeutics.

[12]  H. Zetterberg,et al.  Amyloid-related biomarkers for Alzheimer's disease. , 2008, Current medicinal chemistry.

[13]  S. Kalinin,et al.  Noradrenaline deficiency in brain increases β-amyloid plaque burden in an animal model of Alzheimer's disease , 2007, Neurobiology of Aging.

[14]  B. Gulyás,et al.  Biodistribution and radiation dosimetry of the norepinephrine transporter radioligand (S,S)-[18F]FMeNER-D2: a human whole-body PET study , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[15]  B. Gulyás,et al.  Imaging the norepinephrine transporter with positron emission tomography: initial human studies with (S,S)-[18F]FMeNER-D2 , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[16]  H. Engler,et al.  Evidence for astrocytosis in ALS demonstrated by [11C](l)-deprenyl-D2 PET , 2007, Journal of the Neurological Sciences.

[17]  L. Porrino,et al.  Distribution of norepinephrine transporters in the non-human primate brain , 2006, Neuroscience.

[18]  B. Lopresti,et al.  The peripheral benzodiazepine receptor (Translocator protein 18kDa) in microglia: From pathology to imaging , 2006, Progress in Neurobiology.

[19]  Elisabet Englund,et al.  Locus ceruleus degeneration is ubiquitous in Alzheimer’s disease: Possible implications for diagnosis and treatment , 2006, Neuropathology : official journal of the Japanese Society of Neuropathology.

[20]  Ewert Bengtsson,et al.  A new application of pre-normalized principal component analysis for improvement of image quality and clinical diagnosis in human brain PET studies—Clinical brain studies using [11C]-GR205171, [11C]-l-deuterium-deprenyl, [11C]-5-Hydroxy-l-Tryptophan, [11C]-l-DOPA and Pittsburgh Compound-B , 2006, NeuroImage.

[21]  B. Gulyás,et al.  Atomoxetine occupies the norepinephrine transporter in a dose-dependent fashion: a PET study in nonhuman primate brain using (S,S)-[18F]FMeNER-D2 , 2006, NeuroImage.

[22]  Mathias Hoehn,et al.  Locus Ceruleus Degeneration Promotes Alzheimer Pathogenesis in Amyloid Precursor Protein 23 Transgenic Mice , 2006, The Journal of Neuroscience.

[23]  E. Peskind,et al.  Compensatory Changes in the Noradrenergic Nervous System in the Locus Ceruleus and Hippocampus of Postmortem Subjects with Alzheimer's Disease and Dementia with Lewy Bodies , 2006, The Journal of Neuroscience.

[24]  D. Bylund,et al.  Development of the norepinephrine transporter in the rat CNS , 2005, Neuroscience.

[25]  C. Halldin,et al.  Post-mortem human brain autoradiography of the norepinephrine transporter using (S,S)-[18F]FMeNER-D2 , 2005, European Neuropsychopharmacology.

[26]  D. Murphy,et al.  Specific in vitro binding of (S,S)‐[3H]MeNER to norepinephrine transporters , 2005, Synapse.

[27]  H. Braak,et al.  Postmortale Diagnosestellung bei Morbus Alzheimer , 2005, Der Pathologe.

[28]  K. Varnäs Distribution of Serotonin Receptors and Transporters in the Human Brain: Implications for Psychosis , 2005 .

[29]  Richard B. Banati,et al.  Ligands for peripheral benzodiazepine binding sites in glial cells , 2005, Brain Research Reviews.

[30]  A. Davenport Receptor Binding Techniques , 2005, Methods in Molecular Biology.

[31]  P. Dockery,et al.  P1: An anatomical and MRI study of the human thalamus , 2004 .

[32]  B. Gulyás,et al.  PET evaluation of novel radiofluorinated reboxetine analogs as norepinephrine transporter probes in the monkey brain , 2004, Synapse.

[33]  C. Halldin,et al.  Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain , 2004, Human brain mapping.

[34]  W. Klunk,et al.  Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound‐B , 2004, Annals of neurology.

[35]  K. Gulya,et al.  Intracellular Targeting of Calmodulin mRNAs in Primary Hippocampal Cells , 2003, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[36]  Chris Zarow,et al.  Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. , 2003, Archives of neurology.

[37]  Chris Zarow,et al.  Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease: a meta-analysis , 2003, Neurobiology of Aging.

[38]  Sylvain Houle,et al.  Synthesis and in vivo evaluation of novel radiotracers for the in vivo imaging of the norepinephrine transporter. , 2003, Nuclear medicine and biology.

[39]  R. Banati,et al.  Visualising microglial activation in vivo , 2002, Glia.

[40]  T. Klockgether,et al.  Noradrenergic Depletion Potentiates β-Amyloid-Induced Cortical Inflammation: Implications for Alzheimer's Disease , 2002, The Journal of Neuroscience.

[41]  M. Esiri,et al.  Noradrenergic changes, aggressive behavior, and cognition in patients with dementia , 2002, Biological Psychiatry.

[42]  D. Robertson,et al.  Genetic or acquired deficits in the norepinephrine transporter: current understanding of clinical implications , 2001, Expert Reviews in Molecular Medicine.

[43]  E. Peskind,et al.  Tyrosine hydroxylase and norepinephrine transporter mRNA expression in the locus coeruleus in Alzheimer's disease. , 2000, Brain research. Molecular brain research.

[44]  S. Sesack,et al.  Immunolocalization of the cocaine‐ and antidepressant‐sensitive l‐norepinephrine transporter , 2000, The Journal of comparative neurology.

[45]  E. Vizi Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. , 2000, Pharmacological reviews.

[46]  Abraham Weizman,et al.  Enigma of the peripheral benzodiazepine receptor. , 1999, Pharmacological reviews.

[47]  W. Kamphorst,et al.  Increased activity of surviving locus ceruleus neurons in Alzheimer's disease , 1999, Annals of neurology.

[48]  G. Sedvall,et al.  Whole hemisphere autoradiography of the postmortem human brain. , 1998, Nuclear medicine and biology.

[49]  H. Meltzer,et al.  Reduced Levels of Norepinephrine Transporters in the Locus Coeruleus in Major Depression , 1997, The Journal of Neuroscience.

[50]  D. Purves,et al.  Correlated Size Variations in Human Visual Cortex, Lateral Geniculate Nucleus, and Optic Tract , 1997, The Journal of Neuroscience.

[51]  V. Klimek,et al.  Pharmacology and Distribution of Norepinephrine Transporters in the Human Locus Coeruleus and Raphe Nuclei , 1997, The Journal of Neuroscience.

[52]  N. Volkow,et al.  Selective reduction of radiotracer trapping by deuterium substitution: comparison of carbon-11-L-deprenyl and carbon-11-deprenyl-D2 for MAO B mapping. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[53]  Gunnar Antoni,et al.  Positron Emission Tomography with [11C]Deuterium‐Deprenyl in Temporal Lobe Epilepsy , 1995, Epilepsia.

[54]  S. Tejani-butt,et al.  Norepinephrine transporter sites are decreased in the locus coeruleus in Alzheimer's disease , 1993, Brain Research.

[55]  Wade K. Smith,et al.  The human locus coeruleus: computer reconstruction of cellular distribution , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  G. Kelényi Thioflavin S fluorescent and congo red anisotropic stainings in the histologic demonstration of amyloid , 1967, Acta Neuropathologica.

[57]  P. Mcgeer,et al.  Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. , 2008, Journal of Alzheimer's disease : JAD.

[58]  V. Pike,et al.  Radioligand Development for PET Imaging of β-Amyloid (Aβ)-Current Status , 2007 .

[59]  H. Braak,et al.  [Post-mortem diagnosis of Alzheimer's disease]. , 2005, Der Pathologe.

[60]  A. Davenport,et al.  Imaging and characterization of radioligands for positron emission tomography using quantitative phosphor imaging autoradiography. , 2005, Methods in molecular biology.

[61]  D. Reutens Imaging monoamine oxidase B receptor mapping. , 2000, Advances in neurology.