Block and Sliding-Block Lossy Compression via MCMC

We propose an approach to lossy compression of finite-alphabet sources that utilizes Markov chain Monte Carlo (MCMC) and simulated annealing methods. The idea is to define an energy function over the space of reconstruction sequences. The energy of a candidate reconstruction sequence is defined such that it incorporates its distortion relative to the source sequence, its compressibility, and the point sought on the rate-distortion curve. The proposed algorithm samples from the Boltzmann distribution associated with this energy function using the "heat-bath" algorithm. The complexity of each iteration is independent of the sequence length and is only linearly dependent on a certain context parameter, which grows sub-logarithmically with the sequence length. We show that the proposed algorithm achieves optimum rate-distortion performance in the limits of large number of iterations, and sequence length, when employed on any stationary ergodic source. Inspired by the proposed block-coding algorithm, we also propose an algorithm for constructing sliding-block (SB) codes using similar ideas.

[1]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[2]  David L. Neuhoff,et al.  Process definitions of distortion-rate functions and source coding theorems , 1975, IEEE Trans. Inf. Theory.

[3]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[4]  S. Verdu,et al.  Nonlinear Sparse-Graph Codes for Lossy Compression of Discrete Nonredundant Sources , 2007, 2007 IEEE Information Theory Workshop.

[5]  Robert E. Tarjan,et al.  A Locally Adaptive Data , 1986 .

[6]  S. Dreyfus,et al.  Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .

[7]  Jacob Ziv,et al.  Coding of sources with unknown statistics-II: Distortion relative to a fidelity criterion , 1972, IEEE Trans. Inf. Theory.

[8]  David L. Neuhoff,et al.  Fixed-rate universal codes for Markov sources , 1978, IEEE Trans. Inf. Theory.

[9]  R. Gray Rate distortion functions for finite-state finite-alphabet Markov sources , 1971, IEEE Trans. Inf. Theory.

[10]  En-Hui Yang,et al.  On the Performance of Data Compression Algorithms Based Upon String Matching , 1998, IEEE Trans. Inf. Theory.

[11]  Tsachy Weissman,et al.  An MCMC Approach to Lossy Compression of Continuous Sources , 2010, 2010 Data Compression Conference.

[12]  David L. Neuhoff,et al.  Strong universal source coding subject to a rate-distortion constraint , 1982, IEEE Trans. Inf. Theory.

[13]  J. Vaisey,et al.  Simulated annealing and codebook design , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[14]  Zhen Zhang,et al.  An on-line universal lossy data compression algorithm by continuous codebook refinement , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[15]  Marcelo Weinberger,et al.  Upper Bounds On The Probability Of Sequences Emitted By Finite-state Sources And On The Redundancy Of The Lempel-Ziv Algorithm , 1991, Proceedings. 1991 IEEE International Symposium on Information Theory.

[16]  Erik Ordentlich,et al.  Defect list compression , 2008, ISIT.

[17]  R. Gray,et al.  Nonblock Source Coding with a Fidelity Criterion , 1975 .

[18]  Jun Chen,et al.  Achieving the rate-distortion bound with low-density generator matrix codes , 2010, IEEE Transactions on Communications.

[19]  R. Gallager Information Theory and Reliable Communication , 1968 .

[20]  Sergio Verdú,et al.  Nonlinear Sparse-Graph Codes for Lossy Compression , 2009, IEEE Transactions on Information Theory.

[21]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[22]  Yossef Steinberg,et al.  An algorithm for source coding subject to a fidelity criterion, based on string matching , 1993, IEEE Trans. Inf. Theory.

[23]  K. Rose Deterministic annealing for clustering, compression, classification, regression, and related optimization problems , 1998, Proc. IEEE.

[24]  Tsachy Weissman,et al.  New Bounds on the Rate-Distortion Function of a Binary Markov Source , 2007, 2007 IEEE International Symposium on Information Theory.

[25]  Kenneth Rose,et al.  A mapping approach to rate-distortion computation and analysis , 1994, IEEE Trans. Inf. Theory.

[26]  Toby Berger,et al.  Fixed-slope universal lossy data compression , 1997, IEEE Trans. Inf. Theory.

[27]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[28]  Wojciech Szpankowski,et al.  A suboptimal lossy data compression based on approximate pattern matching , 1997, IEEE Trans. Inf. Theory.

[29]  Kenneth Rose,et al.  Natural type selection in adaptive lossy compression , 2001, IEEE Trans. Inf. Theory.

[30]  Martin J. Wainwright,et al.  Lossy source encoding via message-passing and decimation over generalized codewords of LDGM codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[31]  Toby Berger,et al.  Rate distortion theory : a mathematical basis for data compression , 1971 .

[32]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[33]  S. Mallat A wavelet tour of signal processing , 1998 .

[34]  Zhen Zhang,et al.  An on-line universal lossy data compression algorithm via continuous codebook refinement - Part I: Basic results , 1996, IEEE Trans. Inf. Theory.

[35]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[36]  Jacob Ziv,et al.  Distortion-rate theory for individual sequences , 1980, IEEE Trans. Inf. Theory.

[37]  R. G. Gallager,et al.  Coding of Sources With Unknown Statistics- Part II: Distortion Relative to a Fidelity Criterion , 1972 .

[38]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[39]  David J. Sakrison,et al.  The rate of a class of random processes , 1970, IEEE Trans. Inf. Theory.

[40]  David L. Neuhoff,et al.  Fixed rate universal block source coding with a fidelity criterion , 1975, IEEE Trans. Inf. Theory.

[41]  Ioannis Kontoyiannis,et al.  An implementable lossy version of the Lempel-Ziv algorithm - Part I: Optimality for memoryless sources , 1999, IEEE Trans. Inf. Theory.