An Integrated Multicriterion hp-Adaptive Pseudospectral Method for Direct Optimal Control Problems Solving

Pseudospectral methods (PMs) for solving general optimal control problems (OCPs) attract an increasing amount of research and application in engineering. It is challenging to improve the convergence rate, the solution accuracy, and the applicability of PMs, especially for nonsmooth problems. Existing -adaptive PMs consider only one heuristic criterion, which cannot produce satisfactory performance in many cases. In this paper, we propose a novel method which integrates multicriterion to -adaptive PM, in order to further improve the performance. For this purpose, we first devise an OCP solving framework of -adaptive PM. We then design a multicriterion -adaptive strategy which introduces prior knowledge, intermediate error and curvature as useful criterions for adaptive refinement. We last present an iterative procedure for solving general nonlinear OCPs. Results from two examples show that our method significantly outperforms competitors on the convergence rate and the solution accuracy. The method is practical and effective for direct solving of various OCPs in a broad range of engineering.

[1]  Marc Gerritsma,et al.  hp-Adaptive least squares spectral element method for hyperbolic partial differential equations , 2008 .

[2]  Ming Li,et al.  An optimal controller of an irregular wave maker , 2005 .

[3]  Carlo Cattani,et al.  Simplicial Approach to Fractal Structures , 2012 .

[4]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[5]  Maryam Kiani,et al.  Optimal trajectory planning for flight through microburst wind shears , 2011 .

[6]  Carlos A. Dorao,et al.  hp-adaptive least squares spectral element method for population balance equations , 2008 .

[7]  Mark Ainsworth,et al.  An adaptive refinement strategy for hp -finite element computations , 1998 .

[8]  W. Hager,et al.  An hp‐adaptive pseudospectral method for solving optimal control problems , 2011 .

[9]  William W. Hager,et al.  A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..

[10]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[11]  Ming Li,et al.  An iteration method to adjusting random loading for a laboratory fatigue test , 2005 .

[12]  Maurizio Carlini,et al.  Stability and Control for Energy Production Parametric Dependence , 2010 .

[13]  J. Tinsley Oden,et al.  Control of modeling error in calibration and validation processes for predictive stochastic models , 2011 .

[14]  Panagiotis Tsiotras,et al.  Density Functions for Mesh Refinement in Numerical Optimal Control , 2011 .

[15]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[16]  Waldemar Rachowicz,et al.  Application of an automatic hp adaptive Finite Element Method for thin-walled structures , 2009 .

[17]  Ming Li Fractal Time Series—A Tutorial Review , 2010 .

[18]  Alberto Olivares,et al.  Engineering Notes Hybrid Optimal Control Approach to Commercial Aircraft Trajectory Planning , 2010 .

[19]  A. K. Patra,et al.  Data structures and load balancing for parallel adaptive hp finite-element methods☆ , 2003 .

[20]  Ivo Dolezel,et al.  Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM , 2008, Math. Comput. Simul..

[21]  Anil V. Rao Application of a Dichotomic Basis Method to Performance Optimization of Supersonic Aircraft , 2000 .

[22]  Ming Li,et al.  Visiting Power Laws in Cyber-Physical Networking Systems , 2012 .

[23]  Geoffrey Todd Huntington,et al.  Advancement and analysis of Gauss pseudospectral transcription for optimal control problems , 2007 .

[24]  Ming Li,et al.  Quantitatively investigating the locally weak stationarity of modified multifractional Gaussian noise , 2012 .

[25]  Anil V. Rao,et al.  Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .

[26]  Anil V. Rao,et al.  Direct Trajectory Optimization Using a Variable Low-Order Adaptive Pseudospectral Method , 2011 .

[27]  Marjorie A. McClain,et al.  A Survey of hp-Adaptive Strategies for Elliptic Partial Differential Equations , 2011 .

[28]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[29]  Leszek F. Demkowicz,et al.  A Fully Automatic hp-Adaptivity , 2002, J. Sci. Comput..

[30]  Anil V. Rao,et al.  Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method , 2010, TOMS.

[31]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[32]  Zuliang Lu Adaptive Mixed Finite Element Methods for Parabolic Optimal Control Problems , 2011 .

[33]  J. Tinsley Oden,et al.  A new adaptive modeling strategy based on optimal control for atomic-to-continuum coupling simulations , 2011 .

[34]  Peng Yang,et al.  Dual-EKF-Based Real-Time Celestial Navigation for Lunar Rover , 2012 .

[35]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[36]  Bin Fang,et al.  Nonlinear Time Series: Computations and Applications 2012 , 2010 .

[37]  Carlos A. Dorao,et al.  Hp-Adaptive spectral element solver for reactor modeling , 2009 .

[38]  Abani K. Patra,et al.  A parallel adaptive strategy for hp finite element computations , 1995 .

[39]  I. Michael Ross,et al.  Spectral Algorithm for Pseudospectral Methods in Optimal Control , 2008, Journal of Guidance, Control, and Dynamics.

[40]  Ming Li,et al.  Approximating Ideal Filters by Systems of Fractional Order , 2012, Comput. Math. Methods Medicine.

[41]  David Pardo,et al.  Anisotropic 2D mesh adaptation in hp-adaptive FEM , 2011, ICCS.

[42]  Ming Li,et al.  Viewing Sea Level by a One-Dimensional Random Function with Long Memory , 2011 .

[43]  Michal Kuraz,et al.  Solving the Nonstationary Richards Equation With Adaptive hp-FEM , 2011 .

[44]  William W. Hager,et al.  Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..