A* decoding of block codes

The A* algorithm is applied to maximum-likelihood soft-decision decoding of binary linear block codes. This paper gives a tutorial on the A* algorithm, compares the decoding complexity with that of exhaustive search and Viterbi decoding algorithms, and presents performance curves obtained for several codes.

[1]  T. Wydeven,et al.  Generation rates and chemical compositions of waste streams in a typical crewed space habitat , 1990 .

[2]  P. K. Seshan,et al.  Human life support during interplanetary travel and domicile. IV - Mars expedition technology trade study , 1991 .

[3]  Samuel Dolinar,et al.  Trellis decoding complexity of linear block codes , 1996, IEEE Trans. Inf. Theory.

[4]  Gerald E. Voecks,et al.  Advanced life support technology development for the Space Exploration Initiative , 1990 .

[5]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[6]  C. Hartmann,et al.  Efficient Maximum-Likelihood Soft-Decision Decoding of Linear Block Codes Using Algorithm A* , 1993, Proceedings. IEEE International Symposium on Information Theory.

[7]  T. Wydeven,et al.  Waste streams in a typical crewed space habitat: An update , 1992 .

[8]  P. K. Seshan,et al.  Human Life Support During Interplanetary Travel and Domicile Part V: Mars Expedition Technology Trade Study for Solid Waste Management , 1992 .

[9]  J D Rummel,et al.  Mass balances for a biological life support system simulation model. , 1987, Advances in space research : the official journal of the Committee on Space Research.

[10]  Yunghsiang S. Han,et al.  Designing Efficient Maximum-Likelihood Soft-Decision Decoding Algorithms for Linear Block Codes Using Algorithm A* , 1992 .

[11]  Yunghsiang Sam Han,et al.  Efficient priority-first search maximum-likelihood soft-decision decoding of linear block codes , 1993, IEEE Trans. Inf. Theory.

[12]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[13]  P. K. Seshan,et al.  Human Life Support During Interplanetary Travel and Domicile Part I: System Approach , 1989 .

[14]  Jack K. Wolf,et al.  Efficient maximum likelihood decoding of linear block codes using a trellis , 1978, IEEE Trans. Inf. Theory.

[15]  P. K. Seshan,et al.  Generic Modeling of a Life Support System for Process Technology Comparison , 1993 .

[16]  J. Bibb Cain,et al.  Error-Correction Coding for Digital Communications , 1981 .

[17]  R.J. McEliece The Viterbi decoding complexity of linear block codes , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[18]  Shu Lin,et al.  On the optimum bit orders with respect to the state complexity of trellis diagrams for binary linear codes , 1993, IEEE Trans. Inf. Theory.

[19]  S. Dolinar,et al.  Maximum-Likelihood Soft-Decision Decoding of Block Codes Using the A* Algorithm , 1994 .

[20]  Mark G. Ballin,et al.  Hardware scaleup procedures for P/C life support systems , 1991 .

[21]  Oliver Michael Collins Coding beyond the computational cutoff rate , 1989 .

[22]  P. K. Seshan,et al.  Human life support during interplanetary travel and domicile. II - Generic Modular Flow Schematic modeling , 1991 .

[23]  Harry M. Freeman,et al.  Standard Handbook of Hazardous Waste Treatment and Disposal , 1997 .