High-Pressure 𝛾 -CaMgSi 2 O 6 : Does Penta-Coordinated Silicon Exist in the Earth’s Mantle?

In situ X-ray diffraction experiments with natural Fe- and Al- bearing diopside single crystals and density functional theory (DFT) calculations on diopside end-member composition indicate the existence of a new high-pressure 𝛾 -diopside polymorph with rare penta-coordinated silicon. On compression 𝛼 -diopside transforms to the 𝛾 -phase at ∼ 50 GPa, which in turn, on decompression is observed to convert to the known 𝛽 -phase below 47 GPa. The new 𝛾 -diopside polymorph constitutes another recent example of penta-coordinated silicon ( V Si) in overcompressed metastable crystalline silicates, suggesting that V Si may exist in the transition zone and the uppermost lower mantle in appreciable quantities, not only in silicate glass and melts but also in crystalline phases contained in the coldest parts of subducted stagnant slabs. V Si may have significant influences on buoyancy, wave velocity anomalies, deformation mechanisms, chemical reactivity of silicate rocks, and seismicity within the slab. upon compression as intermediate states and can provide important insight into the transformation mechanism in silica densification. In this paper, we observed a high-pressure crystalline silicate phase with five-coordinated Si. This affects chemical reactivity, elastic and plastic deformation, density of the subducted slab, and its buoyancy relative to the surrounding mantle.

[1]  L. Dubrovinsky,et al.  A closer look into close packing: pentacoordinated silicon in a high-pressure polymorph of danburite , 2017, IUCrJ.

[2]  L. Dubrovinsky,et al.  A new high-pressure phase transition in clinoferrosilite: In situ single-crystal X-ray diffraction study , 2017 .

[3]  R. Downs,et al.  Isosymmetric pressure‐induced bonding increase changes compression behavior of clinopyroxenes across jadeite‐aegirine solid solution in subduction zones , 2017 .

[4]  F. Huang,et al.  First-principles calculations of equilibrium fractionation of O and Si isotopes in quartz, albite, anorthite, and zircon , 2016, Contributions to Mineralogy and Petrology.

[5]  Y. Hu,et al.  Thermodynamic and elastic properties of pyrope at high pressure and high temperature by first‐principles calculations , 2016 .

[6]  P. Dera,et al.  Compressional behavior of omphacite to 47 GPa , 2016, Physics and Chemistry of Minerals.

[7]  P. Dera,et al.  Single-crystal diffraction and Raman spectroscopy of hedenbergite up to 33 GPa , 2015, Physics and Chemistry of Minerals.

[8]  Wenge Yang,et al.  Polymorphic phase transition mechanism of compressed coesite , 2015, Nature Communications.

[9]  D. Rubie,et al.  Why cold slabs stagnate in the transition zone , 2015 .

[10]  J. Hunen,et al.  The effect of metastable pyroxene on the slab dynamics , 2014 .

[11]  T. Duffy,et al.  Phase transitions in orthopyroxene (En90) to 49GPa from single-crystal X-ray diffraction , 2014 .

[12]  Liping Huang,et al.  Brittle to Ductile Transition in Densified Silica Glass , 2014, Scientific Reports.

[13]  J. Bass,et al.  Single-crystal elasticity of diopside to 14 GPa by Brillouin scattering , 2014 .

[14]  Donna Morton,et al.  Structural change in molten basalt at deep mantle conditions , 2013, Nature.

[15]  S. Clark,et al.  High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software , 2013 .

[16]  D. Rubie,et al.  Stagnation of subducting slabs in the transition zone due to slow diffusion in majoritic garnet , 2013 .

[17]  A. Plonka,et al.  β‐diopside, a new ultrahigh‐pressure polymorph of CaMgSi2O6with six‐coordinated silicon , 2012 .

[18]  Y. Fukao,et al.  Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity , 2012 .

[19]  A. Walker The effect of pressure on the elastic properties and seismic anisotropy of diopside and jadeite from atomic scale simulation , 2012 .

[20]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[21]  G. Olah,et al.  Comparative study of the hypercoordinate carbonium ions and their boron analogs: A challenge for spectroscopists , 2011 .

[22]  K. Funakoshi,et al.  Exsolution kinetics of majoritic garnet from clinopyroxene in subducting oceanic crust , 2011 .

[23]  L. Stixrude,et al.  First principles molecular dynamics simulations of diopside (CaMgSi2O6) liquid to high pressure , 2011 .

[24]  C. Bina,et al.  Buoyancy, bending, and seismic visibility in deep slab stagnation , 2010 .

[25]  H. Shiobara,et al.  Stagnant slab : A review , 2009 .

[26]  S. Saxena,et al.  Density profiles of oceanic slabs and surrounding mantle: integrated thermodynamic and thermal modeling, and implications for the fate of slabs at the 660 km discontinuity , 2009 .

[27]  Takumi Kato,et al.  Metastable transformations of eclogite to garnetite in subducting oceanic crust , 2008 .

[28]  T. Kikegawa,et al.  Survival of pyropic garnet in subducting plates , 2008 .

[29]  D. Frost The Upper Mantle and Transition Zone , 2008 .

[30]  Martin T. Dove,et al.  The compressibility and high pressure structure of diopside from first principles simulation , 2008 .

[31]  R. Downs,et al.  The crystal structure of diopside at pressure to 10 GPa , 2006 .

[32]  K. Bozhilov,et al.  Rheology of omphacite at high temperature and pressure and significance of its lattice preferred orientations , 2006 .

[33]  V. Vavryčuk Spatially dependent seismic anisotropy in the Tonga subduction zone: A possible contributor to the complexity of deep earthquakes , 2006 .

[34]  R. Wentzcovitch,et al.  CaSiO3 perovskite at lower mantle pressures , 2005 .

[35]  T. Kikegawa,et al.  Formation of metastable cubic-perovskite in high-pressure phase transformation of Ca(Mg, Fe, Al)Si2O6 , 2005 .

[36]  H. Kojitani,et al.  High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5–CaTiSiO5 system , 2004 .

[37]  Stefano de Gironcoli,et al.  Thermoelastic properties of MgSiO(3)-perovskite: insights on the nature of the Earth's lower mantle. , 2004, Physical review letters.

[38]  M. Brudzinski,et al.  Seismic anisotropy in the mantle transition zone beneath Fiji‐Tonga , 2003 .

[39]  A. Chopelas,et al.  Spectroscopic evidence for pressure-induced phase transitions in diopside , 2002 .

[40]  S. Chaplot,et al.  Molecular dynamics simulations of seismic discontinuities and phase transitions of MgSiO3 from 4 to 6-coordinated silicate via a novel 5-coordinated phase , 2001 .

[41]  W. Utsumi,et al.  High‐pressure phase transformation in CaMgSi2O6 and implications for origin of ultra‐deep diamond inclusions , 2000 .

[42]  H. Schmeling,et al.  The influence of olivine metastability on deep subduction of oceanic lithosphere , 2000 .

[43]  B. Karki,et al.  Ab initio structure of MgSiO3 ilmenite at high pressure , 2000 .

[44]  Oka,et al.  CH5+: the infrared spectrum observed , 1999, Science.

[45]  D. Rubie,et al.  The influence of olivine metastability on the dynamics of subduction , 1999 .

[46]  R. Hemley,et al.  Theoretical study of a five-coordinated silica polymorph , 1997 .

[47]  G. E. Matthews,et al.  Comparison of the Projector Augmented-Wave, Pseudopotential, and Linearized Augmented- Plane-Wave Formalisms for Density-Functional Calculations of Solids , 1997 .

[48]  T. Fliervoet,et al.  Structural characterization of pentacoordinate silicon in a calcium silicate , 1996, Nature.

[49]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[50]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[51]  R. R. Holmes Comparison of Phosphorus and Silicon: Hypervalency, Stereochemistry, and Reactivity. , 1996, Chemical reviews.

[52]  Emile A. Okal,et al.  Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere , 1996 .

[53]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[54]  D. Canil Stability of clinopyroxene at pressure-temperature conditions of the transition region , 1994 .

[55]  Charles R. Ross,et al.  Kinetics of the olivine-spinel transformation in subducting lithosphere: experimental constraints and implications for deep slab processes , 1994 .

[56]  L. Stixrude,et al.  Petrology, elasticity, and composition of the mantle transition zone , 1992 .

[57]  Nobuo Morimoto,et al.  Nomenclature of Pyroxenes , 1988, Mineralogical Magazine.

[58]  D. Weidner,et al.  Perovskite-type MgSiO 3 ; single-crystal X-ray diffraction study , 1987 .

[59]  Peter M. Bell,et al.  Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions , 1986 .

[60]  F. Liebau Pentacoordinate silicon intermediate states during silicate condensation and decondensation. Crystallographic support , 1984 .

[61]  Bob Svendsen,et al.  Dynamic compression of diopside and salite to 200 GPa , 1983 .

[62]  A. E. Ringwood,et al.  Phase Transformations and Differentiation in Subducted Lithosphere: Implications for Mantle Dynamics, Basalt Petrogenesis, and Crustal Evolution , 1982, The Journal of Geology.

[63]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[64]  Lin‐gun Liu The system enstatite-wollastonite at high pressures and temperatures, with emphasis on diopside , 1979 .

[65]  M. Faccenda,et al.  The role of solid–solid phase transitions in mantle convection , 2017 .

[66]  H. Ohfuji,et al.  Slow Si-Al interdiffusion in garnet and stagnation of subducting slabs , 2013 .

[67]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[68]  Svendsen,et al.  Shock-Induced Temperatures of CaMgSi 20 o , 2007 .

[69]  S. Stein,et al.  Effects of slab mineralogy on subduction rates , 1999 .

[70]  F. Seifert,et al.  Metastability of enstatite in deep subducting lithosphere , 1994, Nature.

[71]  M. Dewar,et al.  Structural Chemistry of Boron and Silicon , 1986 .

[72]  A. P. Subramaniam Pyroxenes and Garnets from Charnockites and Associated Granulites , 1962 .