Multicolored Hamilton Cycles and Perfect Matchings in Pseudorandom Graphs

Given 0 < p < 1, we prove that a pseudorandom graph G with edge density p and sufficiently large order has the following property: Consider any red/blue-coloring of the edges of G and let r denote the proportion of edges which have the color red. Then there is a Hamilton cycle C so that the proportion of red edges of C is close to r. The analogue also holds for perfect matchings instead of Hamilton cycles. We also prove a bipartite version which is used elsewhere to give a minimum-degree condition for the existence of a Hamilton cycle in a 3-uniform hypergraph.

[1]  Béla Bollobás,et al.  Random Graphs , 1985 .

[2]  D. Falikman Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix , 1981 .

[3]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[4]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[5]  Vojtech Rödl,et al.  A Dirac-Type Theorem for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[6]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[7]  Alexander Schrijver,et al.  A Short Proof of Minc's Conjecture , 1978, J. Comb. Theory, Ser. A.

[8]  Alan M. Frieze,et al.  On packing Hamilton cycles in ?-regular graphs , 2005, J. Comb. Theory, Ser. B.

[9]  Alan M. Frieze,et al.  Multicoloured Hamilton cycles in random graphs; an anti-Ramsey threshold , 1995, Electron. J. Comb..

[10]  Alan M. Frieze,et al.  Multicoloured Hamilton Cycles , 1995, Electron. J. Comb..

[11]  Vojtech Rödl,et al.  Perfect Matchings in ε-regular Graphs , 1998, Electron. J. Comb..

[12]  Vojtech Rödl,et al.  Perfect Matchings in ε-Regular Graphs and the Blow-Up Lemma , 1999, Comb..