Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations
暂无分享,去创建一个
[1] Qiang Du,et al. Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..
[2] Xiaoqiang Wang,et al. PHASE FIELD MODELS AND SIMULATIONS OF VESICLE BIO-MEMBRANES , 2005 .
[3] Udo Seifert,et al. Configurations of fluid membranes and vesicles , 1997 .
[4] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[5] Qiang Du,et al. A phase field formulation of the Willmore problem , 2005 .
[6] Zhiming Chen,et al. An error estimate for a finite-element scheme for a phase field model , 1994 .
[7] Liyong Zhu,et al. ANALYSIS OF A MIXED FINITE ELEMENT METHOD FOR A PHASE FIELD BENDING ELASTICITY MODEL OF VESICLE , 2006 .
[8] Qiang Du,et al. Analysis and Convergence of a Covolume Approximation of the Ginzburg--Landau Model of Superconductivity , 1998 .
[9] W. Helfrich. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.
[10] Jian Zhang,et al. Adaptive Finite Element Method for a Phase Field Bending Elasticity Model of Vesicle Membrane Deformations , 2008, SIAM J. Sci. Comput..
[11] Qiang Du,et al. Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation , 2005 .
[12] M. Chipot. Finite Element Methods for Elliptic Problems , 2000 .
[13] Numerical simulations of nonlinear phase transitions—I. The isotropic case , 1988 .
[14] Chun Liu,et al. Approximation of Liquid Crystal Flows , 2000, SIAM J. Numer. Anal..
[15] Charles M. Elliott,et al. Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation , 1992 .
[16] Qiang Du,et al. Retrieving Topological Information for Phase Field Models , 2005, SIAM J. Appl. Math..
[17] Qiang Du,et al. Semidiscrete Finite Element Approximations of a Linear Fluid-Structure Interaction Problem , 2004, SIAM J. Numer. Anal..
[18] Charles M. Elliott,et al. A second order splitting method for the Cahn-Hilliard equation , 1989 .
[19] Gunduz Caginalp,et al. A Numerical Analysis of an Anisotropic Phase Field Model , 1987 .
[20] Q. Du,et al. A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .
[21] Andreas Prohl,et al. Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits , 2003, Math. Comput..
[22] R. Nicolaides. Direct discretization of planar div-curl problems , 1992 .
[23] Ou-Yang Zhong-can,et al. Geometric methods in the elastic theory of membranes in liquid crystal phases , 1999 .
[24] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[25] Qiang Du,et al. Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..