Multiple solutions to boundary-value problems for fourth-order elliptic equations

<jats:p>UDC 517.9 We study the existence of multiple solutions for the biharmonic problem<mml:math> <mml:mtable class="m-gather-starred" displaystyle="true" style="display: block; margin-top: 1.0em; margin-bottom: 2.0em"> <mml:mtr columnalign="center"> <mml:mtd rowspan="2"> <mml:mspace width="6.0em" /> </mml:mtd> <mml:mtd> <mml:msup> <mml:mi>Δ</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo form="prefix">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo form="postfix">)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>g</mml:mi> <mml:mrow> <mml:mo form="prefix">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo form="postfix">)</mml:mo> </mml:mrow> <mml:mspace width="1.00em" /> <mml:mtext>in</mml:mtext> <mml:mspace width="1.00em" /> <mml:mi>Ω</mml:mi> <mml:mo>,</mml:mo> </mml:mtd> <mml:mtd columnalign="right" style="width: 100%"> <mml:mspace width="6.0em" /> </mml:mtd> </mml:mtr> <mml:mtr columnalign="center"> <mml:mtd> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mo>∂</mml:mo> <mml:mi>ν</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mspace width="1.00em" /> <mml:mtext>on</mml:mtext> <mml:mspace width="1.00em" /> <mml:mo>∂</mml:mo> <mml:mi>Ω</mml:mi> <mml:mo>,</mml:mo> </mml:mtd> <mml:mtd columnalign="right" style="width: 100%"> <mml:mspace width="6.0em" /> </mml:mtd> </mml:mtr> </mml:mtable> </mml:math> where <mml:math> <mml:mrow> <mml:mi>Ω</mml:mi> </mml:mrow> </mml:math> is a bounded domain with smooth boundary in <mml:math> <mml:mrow> <mml:msup> <mml:mi>ℝ</mml:mi> <mml:mi>N</mml:mi> </mml:msup> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> <mml:math> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>></mml:mo> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> <mml:math> <mml:mrow> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo form="prefix">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ξ</mml:mi> <mml:mo form="postfix">)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is odd in <mml:math> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> and <mml:math> <mml:mrow> <mml:mi>g</mml:mi> <mml:mrow> <mml:mo form="prefix">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ξ</mml:mi> <mml:mo form="postfix">)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is a perturbation term. Under certain growth conditions on <mml:math> <mml:mrow> <mml:mi>f</mml:mi> </mml:mrow> </mml:math> and <mml:math> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> we show that there are infinitely many weak solutions to the problem.</jats:p>

[1]  D. T. Luyen Infinitely Many Solutions for a Fourth-Order Semilinear Elliptic Equations Perturbed from Symmetry , 2021 .

[2]  D. T. Luyen Picone’s Identity For ∆γ -Laplace Operator and its Applications , 2021, Ukrainian Mathematical Journal.

[3]  D. T. Luyen,et al.  On the existence of multiple solutions to boundary value problems for semilinear elliptic degenerate operators , 2018, Complex Variables and Elliptic Equations.

[4]  C. T. Anh,et al.  Existence of solutions to Δλ-Laplace equations without the Ambrosetti–Rabinowitz condition , 2016 .

[5]  N. M. Tri,et al.  Long time behavior of solutions to semilinear parabolic equations involving strongly degenerate elliptic differential operators , 2013 .

[6]  E. Lanconelli,et al.  On semilinear Δλ-Laplace equation , 2012 .

[7]  N. M. Tri,et al.  Nontrivial solutions to boundary value problems for semilinear strongly degenerate elliptic differential equations , 2012 .

[8]  Zhongli Wei,et al.  Infinitely many nontrivial solutions for a class of biharmonic equations via variant fountain theorems , 2011 .

[9]  Xiangqing Liu,et al.  On sign-changing solution for a fourth-order asymptotically linear elliptic problem , 2010 .

[10]  Jianwen Zhou,et al.  Sign-changing solutions for some fourth-order nonlinear elliptic problems , 2008 .

[11]  Alan C. Lazer,et al.  Large-Amplitude Periodic Oscillations in Suspension Bridges: Some New Connections with Nonlinear Analysis , 1990, SIAM Rev..

[12]  M. Chipot Variational Inequalities and Flow in Porous Media , 1984 .

[13]  Shmuel Agmon,et al.  On kernels, eigenvalues, and eigenfunctions of operators related to elliptic problems , 1965 .

[14]  Å. Pleijel,et al.  On the eigenvalues and eigenfunctions of elastic plates , 1950 .

[15]  D. T. Luyen,et al.  Global attractor of the Cauchy problem for a semilinear degenerate damped hyperbolic equation involving the Grushin operator , 2016 .