<jats:p>UDC 517.9
We study the existence of multiple solutions for the biharmonic problem<mml:math>
<mml:mtable class="m-gather-starred" displaystyle="true" style="display: block; margin-top: 1.0em; margin-bottom: 2.0em">
<mml:mtr columnalign="center">
<mml:mtd rowspan="2">
<mml:mspace width="6.0em" />
</mml:mtd>
<mml:mtd>
<mml:msup>
<mml:mi>Δ</mml:mi>
<mml:mn>2</mml:mn>
</mml:msup>
<mml:mi>u</mml:mi>
<mml:mo>=</mml:mo>
<mml:mi>f</mml:mi>
<mml:mrow>
<mml:mo form="prefix">(</mml:mo>
<mml:mi>x</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>u</mml:mi>
<mml:mo form="postfix">)</mml:mo>
</mml:mrow>
<mml:mo>+</mml:mo>
<mml:mi>g</mml:mi>
<mml:mrow>
<mml:mo form="prefix">(</mml:mo>
<mml:mi>x</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>u</mml:mi>
<mml:mo form="postfix">)</mml:mo>
</mml:mrow>
<mml:mspace width="1.00em" />
<mml:mtext>in</mml:mtext>
<mml:mspace width="1.00em" />
<mml:mi>Ω</mml:mi>
<mml:mo>,</mml:mo>
</mml:mtd>
<mml:mtd columnalign="right" style="width: 100%">
<mml:mspace width="6.0em" />
</mml:mtd>
</mml:mtr>
<mml:mtr columnalign="center">
<mml:mtd>
<mml:mi>u</mml:mi>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mo>∂</mml:mo>
<mml:mi>ν</mml:mi>
</mml:msub>
<mml:mi>u</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>0</mml:mn>
<mml:mspace width="1.00em" />
<mml:mtext>on</mml:mtext>
<mml:mspace width="1.00em" />
<mml:mo>∂</mml:mo>
<mml:mi>Ω</mml:mi>
<mml:mo>,</mml:mo>
</mml:mtd>
<mml:mtd columnalign="right" style="width: 100%">
<mml:mspace width="6.0em" />
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math> where <mml:math>
<mml:mrow>
<mml:mi>Ω</mml:mi>
</mml:mrow>
</mml:math> is a bounded domain with smooth boundary in <mml:math>
<mml:mrow>
<mml:msup>
<mml:mi>ℝ</mml:mi>
<mml:mi>N</mml:mi>
</mml:msup>
<mml:mo>,</mml:mo>
</mml:mrow>
</mml:math> <mml:math>
<mml:mrow>
<mml:mi>N</mml:mi>
<mml:mo>></mml:mo>
<mml:mn>4</mml:mn>
<mml:mo>,</mml:mo>
</mml:mrow>
</mml:math> <mml:math>
<mml:mrow>
<mml:mi>f</mml:mi>
<mml:mrow>
<mml:mo form="prefix">(</mml:mo>
<mml:mi>x</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>ξ</mml:mi>
<mml:mo form="postfix">)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math> is odd in <mml:math>
<mml:mrow>
<mml:mi>ξ</mml:mi>
<mml:mo>,</mml:mo>
</mml:mrow>
</mml:math> and <mml:math>
<mml:mrow>
<mml:mi>g</mml:mi>
<mml:mrow>
<mml:mo form="prefix">(</mml:mo>
<mml:mi>x</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>ξ</mml:mi>
<mml:mo form="postfix">)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math> is a perturbation term. Under certain growth conditions on <mml:math>
<mml:mrow>
<mml:mi>f</mml:mi>
</mml:mrow>
</mml:math> and <mml:math>
<mml:mrow>
<mml:mi>g</mml:mi>
<mml:mo>,</mml:mo>
</mml:mrow>
</mml:math> we show that there are infinitely many weak solutions to the problem.</jats:p>
[1]
D. T. Luyen.
Infinitely Many Solutions for a Fourth-Order Semilinear Elliptic Equations Perturbed from Symmetry
,
2021
.
[2]
D. T. Luyen.
Picone’s Identity For ∆γ -Laplace Operator and its Applications
,
2021,
Ukrainian Mathematical Journal.
[3]
D. T. Luyen,et al.
On the existence of multiple solutions to boundary value problems for semilinear elliptic degenerate operators
,
2018,
Complex Variables and Elliptic Equations.
[4]
C. T. Anh,et al.
Existence of solutions to Δλ-Laplace equations without the Ambrosetti–Rabinowitz condition
,
2016
.
[5]
N. M. Tri,et al.
Long time behavior of solutions to semilinear parabolic equations involving strongly degenerate elliptic differential operators
,
2013
.
[6]
E. Lanconelli,et al.
On semilinear Δλ-Laplace equation
,
2012
.
[7]
N. M. Tri,et al.
Nontrivial solutions to boundary value problems for semilinear strongly degenerate elliptic differential equations
,
2012
.
[8]
Zhongli Wei,et al.
Infinitely many nontrivial solutions for a class of biharmonic equations via variant fountain theorems
,
2011
.
[9]
Xiangqing Liu,et al.
On sign-changing solution for a fourth-order asymptotically linear elliptic problem
,
2010
.
[10]
Jianwen Zhou,et al.
Sign-changing solutions for some fourth-order nonlinear elliptic problems
,
2008
.
[11]
Alan C. Lazer,et al.
Large-Amplitude Periodic Oscillations in Suspension Bridges: Some New Connections with Nonlinear Analysis
,
1990,
SIAM Rev..
[12]
M. Chipot.
Variational Inequalities and Flow in Porous Media
,
1984
.
[13]
Shmuel Agmon,et al.
On kernels, eigenvalues, and eigenfunctions of operators related to elliptic problems
,
1965
.
[14]
Å. Pleijel,et al.
On the eigenvalues and eigenfunctions of elastic plates
,
1950
.
[15]
D. T. Luyen,et al.
Global attractor of the Cauchy problem for a semilinear degenerate damped hyperbolic equation involving the Grushin operator
,
2016
.