An anisotropic large displacement cohesive zone model for fibrillar and crazing interfaces

A new cohesive zone model to describe fracture of interfaces with a microstructurs made of fibrils with statistically distributed in-plane and out-of-plane orientations is proposed. The elementary force–displacement relation of each fibril is considered to obey the peeling theory of a tape, although other refined constitutive relations could be invoked for the adhesive constitutive response without any lack of generality. The proposed consistent 2D and 3D interface finite element formulations for large displacements account for both the mechanical and the geometrical tangent stiffness matrices, required for implicit solution schemes. After a preliminary discussion on model parameters identification, it is shown that by tailoring the spatial density of fibrils at different orientations can be a way to realize innovative interfaces enhancing adhesion or decohesion, depending on the need. For instance, it can be possible to realize microstructured adhesives to facilitate debonding of the glass cover in photovoltaic modules to simplify recycling purposes. Moreover, the use of probability distribution functions describing the density of fibrils at different orientations is a very effective approach for modeling the anisotropy in the mechanical bonding between paper tissues and for simulating the complex process of crazing in amorphous polymers.

[1]  A. Movchan,et al.  Statics and dynamics of structural interfaces in elasticity , 2002 .

[2]  S. Basu,et al.  Measurement of Cohesive Parameters of Crazes in Polystyrene Films , 2011 .

[3]  K. Kendall Thin-film peeling-the elastic term , 1975 .

[4]  Mgd Marc Geers,et al.  A cohesive zone model with a large displacement formulation accounting for interfacial fibrilation , 2007 .

[5]  Hamed Lakrout,et al.  Micromechanics of flat‐probe adhesion tests of soft viscoelastic polymer films , 2000 .

[6]  Huajian Gao,et al.  Flaw tolerant bulk and surface nanostructures of biological systems. , 2004, Mechanics & chemistry of biosystems : MCB.

[7]  J. Reinoso,et al.  A consistent interface element formulation for geometrical and material nonlinearities , 2014, 1507.05168.

[8]  Huajian Gao,et al.  Reprint of “Multi-scale cohesive laws in hierarchical materials” [In. J. Solids Struct. 44 (2007) 8177–8193]☆ , 2008 .

[9]  Mgd Marc Geers,et al.  Identification and characterization of delamination in polymer coated metal sheet , 2008 .

[10]  W. Federle,et al.  Insect adhesion on rough surfaces: analysis of adhesive contact of smooth and hairy pads on transparent microstructured substrates , 2014, Journal of The Royal Society Interface.

[11]  Ralph Spolenak,et al.  Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy , 2005, Biology Letters.

[12]  Christian Rey,et al.  The finite element method in solid mechanics , 2014 .

[13]  Nicola M. Pugno,et al.  Observation of optimal gecko's adhesion on nanorough surfaces , 2008, Biosyst..

[14]  M. Paggi,et al.  Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules , 2014, Scientific Reports.

[15]  P. Wriggers,et al.  A nonlocal cohesive zone model for finite thickness interfaces – Part I: Mathematical formulation and validation with molecular dynamics , 2011 .

[16]  Huajian Gao,et al.  Mechanical principles of robust and releasable adhesion of gecko , 2007 .

[17]  Philippe H. Geubelle,et al.  Multiscale cohesive failure modeling of heterogeneous adhesives , 2008 .

[18]  M. Scherge,et al.  Biological micro- and nanotribology , 2001 .

[19]  Huajian Gao,et al.  Hierarchical modelling of attachment and detachment mechanisms of gecko toe adhesion , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Giulio Alfano,et al.  An interface element formulation for the simulation of delamination with buckling , 2001 .

[21]  K. Bertoldi,et al.  Structural interfaces in linear elasticity. Part II: Effective properties and neutrality , 2007 .

[22]  Peter Wriggers,et al.  Stiffness and strength of hierarchical polycrystalline materials with imperfect interfaces , 2012 .

[23]  van der Erik Giessen,et al.  Modeling of the competition between shear yielding and crazing in glassy polymers , 2000 .

[24]  Claudio Balzani,et al.  An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates , 2008 .

[25]  Nicola Pugno,et al.  Normal Adhesive Force-Displacement Curves of Living Geckos , 2011 .

[26]  Huajian Gao,et al.  Mechanics of hierarchical adhesion structures of geckos , 2005 .

[27]  David H. Allen,et al.  A micromechanical model for a viscoelastic cohesive zone , 2001 .

[28]  H. Yao,et al.  Adhesion and sliding response of a biologically inspired fibrillar surface: experimental observations , 2008, Journal of The Royal Society Interface.

[29]  Nicola Pugno,et al.  Optimal Angles for Maximal Adhesion in Living Tokay Geckos , 2012 .

[30]  M. Geers,et al.  On the development of a 3D cohesive zone element in the presence of large deformations , 2008 .

[31]  Peter Wriggers,et al.  A nonlocal cohesive zone model for finite thickness interfaces – Part II: FE implementation and application to polycrystalline materials , 2011 .

[32]  Long Chen FINITE ELEMENT METHOD , 2013 .

[33]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[34]  K. Bertoldia,et al.  A discrete-fibers model for bridged cracks and reinforced elliptical voids , 2007 .

[35]  E. Kramer,et al.  Fundamental processes of craze growth and fracture , 1990 .

[36]  R. Fearing,et al.  Simulation of synthetic gecko arrays shearing on rough surfaces , 2014, Journal of The Royal Society Interface.

[37]  Marco Paggi,et al.  A multi-physics and multi-scale numerical approach to microcracking and power-loss in photovoltaic modules , 2013, 1303.7452.

[38]  Huajian Gao,et al.  Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. , 2006 .

[39]  Huajian Gao,et al.  Bio-inspired mechanics of reversible adhesion : Orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials , 2007 .

[40]  Huajian Gao,et al.  Multi-scale cohesive laws in hierarchical materials , 2007 .

[41]  Katia Bertoldi,et al.  Structural interfaces in linear elasticity. Part I: Nonlocality and gradient approximations , 2007 .

[42]  Marc G. D. Geers,et al.  Multi-scale modelling of delamination through fibrillation , 2014 .

[43]  Robert M. McMeeking,et al.  Peeling of a tape with large deformations and frictional sliding , 2013 .

[44]  Mgd Marc Geers,et al.  Copper-rubber interface delamination in stretchable electronics , 2010 .