A critical evaluation of novel algorithms for the off-lattice Monte Carlo simulation of condensed polymer phases

Novel composite algorithms for efficient off-lattice simulations of dense polymer phases are implemented and evaluated in the case of polyethylene in the united and explicit atom approximations. The simulation algorithms are based on combinations of traditional methods with recently developed Monte Carlo moves. The classical Metropolis Monte Carlo (MMC) and Reptation techniques are supplemented with the Continuum-Configuration Bias (CCB) and the Concerted-Rotation (CONROT) methods. Several extensions of the CONROT method, involving the simultaneous coordinated displacement of four to seven chain backbone sites, are developed and tested in this paper. CONROT-based methods enhance the performance of the algorithm at the level of local segmental motions, whereas the CCB component is important for the convergence of global properties, such as the relaxation of end-to-end distance vectors. The present composite algorithms are able to reproduce quite efficiently equilibrium thermodynamic properties, such as the density and the radial distribution function in the liquid state. However, they fail to generate completely equilibrated melts of long chains (polyethylene with 70 carbon atoms) at the molecular level. In spite of this shortcoming, we believe that these methods constitute the most promising currently available tools for the off-lattice simulation of realistic models of polymer melts and glasses. A satisfactory treatment of relatively long polyethylene chains (with up to 40 carbon atoms in the backbone, according to our estimates) is possible at experimental melt densities, both in the NVT and NPT ensembles.

[1]  K. Binder Monte Carlo methods in statistical physics , 1979 .

[2]  F. T. Wall,et al.  Macromolecular dimensions obtained by an efficient Monte Carlo method without sample attrition , 1975 .

[3]  K. Binder,et al.  Glass transition of polymer melts : a two-dimensional Monte Carlo study in the framework of the bond fluctuation method , 1992 .

[4]  U. Suter,et al.  Detailed molecular structure of a vinyl polymer glass , 1985 .

[5]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[6]  N. G. Almarza,et al.  Monte Carlo simulation of liquid n-alkanes. I: Intramolecular structure and thermodynamics , 1992 .

[7]  Robert L. Jernigan,et al.  Conformational Energies of n-Alkanes and the Random Configuration of Higher Homologs Including Polymethylene , 1966 .

[8]  P. Gennes Reptation of a Polymer Chain in the Presence of Fixed Obstacles , 1971 .

[9]  J. Mccammon,et al.  Simulation methods for protein structure fluctuations , 1980, Biopolymers.

[10]  R. Roe,et al.  Molecular dynamics simulation of polymer liquid and glass. II. Short range order and orientation correlation , 1988 .

[11]  Ulrich W. Suter,et al.  Local structure and the mechanism of response to elastic deformation in a glassy polymer , 1986 .

[12]  H. Meirovitch,et al.  Computer simulation of long polymers adsorbed on a surface. I. Corrections to scaling in an ideal chain , 1988 .

[13]  Juan J. de Pablo,et al.  Simulation of phase equilibria for chain molecules , 1992 .

[14]  J. H. Weiner,et al.  Brownian dynamics study of a polymer chain of linked rigid bodies , 1979 .

[15]  Hans Christian Oettinger Computer simulation of three-dimensional multiple-chain systems: scaling laws and virial coefficients , 1985 .

[16]  T. Pakula,et al.  Cooperative Relaxations in Condensed Macromolecular Systems. 1. A Model for Computer Simulation , 1987 .

[17]  Andrzej Kolinski,et al.  On the short time dynamics of dense polymeric systems and the origin of the glass transition: A model system , 1986 .

[18]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[19]  A. A. Gusev,et al.  Dynamics of light gases in rigid matrices of dense polymers , 1993 .

[20]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1969 .

[21]  B. Montgomery Pettitt,et al.  Molecular dynamics with a variable number of molecules , 1991 .

[22]  Ulrich W. Suter,et al.  Atomistic modeling of mechanical properties of polymeric glasses , 1986 .

[23]  J. I. Siepmann,et al.  A method for the direct calculation of chemical potentials for dense chain systems , 1990 .

[24]  A. W. Rosenbluth,et al.  MONTE CARLO CALCULATION OF THE AVERAGE EXTENSION OF MOLECULAR CHAINS , 1955 .

[25]  Hagai Meirovitch,et al.  Efficient dynamical Monte Carlo method for dense polymer systems , 1984 .

[26]  Thomas A. Weber,et al.  Brownian Dynamics Study of Polymer Conformational Transitions , 1979 .

[27]  Akio Kitao,et al.  Conformational dynamics of polypeptides and proteins in the dihedral angle space and in the cartesian coordinate space: Normal mode analysis of deca‐alanine , 1991 .

[28]  K. Sommer Correlation between primary chemical structure and property phenomena in polycondensates , 1991 .

[29]  Juan J. de Pablo,et al.  Simulation of polyethylene above and below the melting point , 1992 .

[30]  H. Meirovitch,et al.  Scanning method as an unbiased simulation technique and its application to the study of self-attracting random walks. , 1985, Physical review. A, General physics.

[31]  N. G. Almarza,et al.  Monte Carlo simulations of liquid n-butane , 1990 .

[32]  D. Rapaport,et al.  Molecular Dynamics Simulation of Linear Polymers in a Solvent , 1992 .

[33]  P. Flory,et al.  Foundations of Rotational Isomeric State Theory and General Methods for Generating Configurational Averages , 1974 .

[34]  J. D. Doll,et al.  Brownian dynamics as smart Monte Carlo simulation , 1978 .

[35]  H. Berendsen,et al.  COMPUTER-SIMULATION OF MOLECULAR-DYNAMICS - METHODOLOGY, APPLICATIONS, AND PERSPECTIVES IN CHEMISTRY , 1990 .

[36]  Juan J. de Pablo,et al.  Continuum-configurational-bias Monte Carlo simulations of long-chain alkanes , 1993 .

[37]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[38]  Harold A. Scheraga,et al.  On the Use of Classical Statistical Mechanics in the Treatment of Polymer Chain Conformation , 1976 .

[39]  W. F. van Gunsteren,et al.  Effect of constraints on the dynamics of macromolecules , 1982 .

[40]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[41]  Juan J. de Pablo,et al.  Estimation of the chemical potential of chain molecules by simulation , 1992 .

[42]  I. Bahar,et al.  Comparison of Dynamic Rotational Isomeric State Results with Previous Expressions for Local Chain Motion , 1989 .

[43]  Gusev,et al.  Theory for solubility in static systems. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[44]  Richard H. Boyd,et al.  The Conformational Analysis of Crankshaft Motions in Polyethylene , 1974 .

[45]  S. Toxvaerd Solution of the generalized Langevin equation for a polymer in a solvent , 1987 .

[46]  S. Rice,et al.  A lattice model of a supported monolayer of amphiphile molecules: Monte Carlo simulations , 1988 .

[47]  H. Berendsen,et al.  STOCHASTIC DYNAMICS FOR MOLECULES WITH CONSTRAINTS BROWNIAN DYNAMICS OF NORMAL-ALKANES , 1981 .

[48]  Anthony N. Burkitt,et al.  Computer-Simulation Methods , 1990 .

[49]  Jeffrey Skolnick,et al.  Dynamics of Rigid and Flexible Constraints for Polymers. Effect of the Fixman Potential , 1985 .

[50]  D. Frenkel,et al.  Unexpected length dependence of the solubility of chain molecules , 1992 .

[51]  David M. Ceperley,et al.  Investigations of static properties of model bulk polymer fluids , 1980 .

[52]  J. Ilja Siepmann,et al.  Monte Carlo simulations of mixed monolayers , 1992 .

[53]  Marc L. Mansfield,et al.  Monte Carlo studies of polymer chain dimensions in the melt , 1982 .

[54]  Paolo Corradini,et al.  A computer model of molecular arrangement in a n‐paraffinic liquid , 1980 .

[55]  David Rigby,et al.  Molecular dynamics simulation of polymer liquid and glass. I. Glass transition , 1987 .

[56]  Michael Kotelyanskii,et al.  A dynamic Monte Carlo method suitable for molecular simulations , 1992 .

[57]  Daan Frenkel,et al.  Configurational bias Monte Carlo: a new sampling scheme for flexible chains , 1992 .

[58]  Harold A. Scheraga,et al.  Standard‐geometry chains fitted to X‐ray derived structures: Validation of the rigid‐geometry approximation. I. Chain closure through a limited search of “loop” conformations , 1991 .

[59]  Doros N. Theodorou,et al.  Molecular dynamics simulation of a glassy polymer surface , 1991 .

[60]  P. Pant,et al.  Structure and properties of polymeric glasses by energy minimization , 1991 .

[61]  Exact Langevin algorithms , 1992 .

[62]  R. Roe,et al.  Molecular dynamics simulation of polymer liquid and glass. 3. Chain conformation , 1989 .

[63]  Bruce J. Berne,et al.  On a novel Monte Carlo scheme for simulating water and aqueous solutions , 1978 .

[64]  W. Vangunsteren Constrained dynamics of flexible molecules , 1980 .

[65]  R. Pethrick,et al.  Molecular motion in high polymers , 1981 .

[66]  L. Sperling Introduction to physical polymer science , 1986 .

[67]  Kurt Kremer,et al.  The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions , 1988 .

[68]  N. Go,et al.  Ring Closure and Local Conformational Deformations of Chain Molecules , 1970 .

[69]  O. F. Olaj,et al.  Simulation of chain arrangement in bulk polymer, 1. Chain dimensions and distribution of the end‐to‐end distance , 1982 .

[70]  E. Helfand,et al.  Flexible vs rigid constraints in statistical mechanics , 1979 .

[71]  D. J. Walsh,et al.  The pressure-volume-temperature properties of polyethylene, poly(dimethyl siloxane), poly(ethylene glycol) and poly(propylene glycol) as a function of molecular weight , 1992 .

[72]  J. Mccammon,et al.  Dynamics of Proteins and Nucleic Acids , 2018 .

[73]  G. Rutledge,et al.  CALCULATION OF MECHANICAL PROPERTIES OF POLY(P-PHENYLENE TEREPHTHALAMIDE) BY ATOMISTIC MODELLING , 1991 .

[74]  M. Fixman Classical statistical mechanics of constraints: a theorem and application to polymers. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Heermann,et al.  Hybrid Monte Carlo method for condensed-matter systems. , 1992, Physical review. B, Condensed matter.

[76]  B. Montgomery Pettitt,et al.  Grand molecular dynamics: A method for open systems , 1991 .

[77]  H. D. Cochran,et al.  Continuum configurational bias Monte-Carlo studies of alkanes and polyethylene , 1993 .

[78]  Jozef Bicerano,et al.  Computational modeling of polymers , 1992 .

[79]  F. Abraham,et al.  Computational statistical mechanics methodology, applications and supercomputing , 1986 .

[80]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid n-butane near its boiling point , 1975 .

[81]  A. Argon,et al.  Quasi-static modeling of chain dynamics in the amorphous glassy polycarbonate of 4,4'-isopropylidenediphenol , 1991 .

[82]  Richard H. Boyd,et al.  An off-lattice constant-pressure simulation of liquid polymethylene , 1989 .

[83]  K. Binder,et al.  On the construction of coarse‐grained models for linear flexible polymer chains: Distribution functions for groups of consecutive monomers , 1991 .

[84]  Moshe Gottlieb Application of computer simulation techniques to macromolecular theories , 1977, Comput. Chem..

[85]  Cooperative relaxations in condensed macromolecular systems. II: Computer simulation of self-diffusion of linear chains , 1987 .

[86]  W. G. Madden,et al.  Monte Carlo studies of the melt–vacuum interface of a lattice polymer , 1987 .

[87]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[88]  R. Roe Computer simulation of polymers , 1991 .

[89]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[90]  A molecular dynamics calculation to confirm the incorrectness of the random‐walk distribution for describing the Kramers freely jointed bead–rod chain , 1976 .