Chain Code-Based Local Descriptor for Face Recognition

Local descriptors have been one of the most intensively examined mechanisms of image analysis. In this paper, we propose a new chain code-based local descriptor. Unlike many other descriptors existing in the literature, this descriptor is based on string values, which are obtained when starting from a particular point of the image and searching for extrema in a given neighborhood and memorizing a path being traversed through the consequent pixels of the image. We demonstrate that this approach is efficient and helps us preserve both local and global properties of the object. To compare the words we apply the Levenshtein distance. Moreover, four similarity measures (correlation, histogram intersection, chi-square, and Hellinger) are used to compare the histograms of words in the process of classification.

[1]  Chi-Ho Chan,et al.  Full ranking as local descriptor for visual recognition: A comparison of distance metrics on sn , 2015, Pattern Recognit..

[2]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Jake K. Aggarwal,et al.  Computer Recognition of Partial Views of Curved Objects , 1977, IEEE Transactions on Computers.

[4]  Manesh Kokare,et al.  Performance Evaluation of Distance Metrics: Application to Fingerprint Recognition , 2011, Int. J. Pattern Recognit. Artif. Intell..

[5]  Mohan S. Kankanhalli,et al.  Shape Measures for Content Based Image Retrieval: A Comparison , 1997, Inf. Process. Manag..

[6]  Witold Pedrycz,et al.  Face recognition: A study in information fusion using fuzzy integral , 2005, Pattern Recognit. Lett..

[7]  Witold Pedrycz,et al.  Local descriptors and similarity measures for frontal face recognition: A comparative analysis , 2013, J. Vis. Commun. Image Represent..

[8]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[9]  Witold Pedrycz,et al.  A study in facial regions saliency: a fuzzy measure approach , 2014, Soft Comput..

[10]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[12]  Norbert Krüger,et al.  Face recognition by elastic bunch graph matching , 1997, Proceedings of International Conference on Image Processing.

[13]  Marko Heikkilä,et al.  Description of interest regions with local binary patterns , 2009, Pattern Recognit..

[14]  Gonzalo Navarro,et al.  A guided tour to approximate string matching , 2001, CSUR.

[15]  Ernesto Bribiesca,et al.  A new chain code , 1999, Pattern Recognit..

[16]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[17]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[18]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[19]  V. N. Manjunath Aradhya,et al.  The study of different similarity measure techniques in recognition of handwritten characters , 2012, ICACCI '12.

[20]  Witold Pedrycz,et al.  Local descriptors in application to the aging problem in face recognition , 2013, Pattern Recognit..

[21]  Wen Gao,et al.  Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[22]  Norbert Krüger,et al.  Face Recognition by Elastic Bunch Graph Matching , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Shengcai Liao,et al.  Learning Multi-scale Block Local Binary Patterns for Face Recognition , 2007, ICB.

[24]  Herbert Freeman,et al.  On the Encoding of Arbitrary Geometric Configurations , 1961, IRE Trans. Electron. Comput..

[25]  Xiaoyang Tan,et al.  Fusing Gabor and LBP Feature Sets for Kernel-Based Face Recognition , 2007, AMFG.

[26]  Matti Pietikäinen,et al.  Face Recognition with Local Binary Patterns , 2004, ECCV.

[27]  Sébastien Marcel,et al.  Face Authentication Using Adapted Local Binary Pattern Histograms , 2006, ECCV.

[28]  Vytautas Perlibakas,et al.  Distance measures for PCA-based face recognition , 2004, Pattern Recognit. Lett..

[29]  Chong Sze Tong,et al.  Survey of Distance Measures for NMF-Based Face Recognition , 2006, CIS.

[30]  Tao Wang,et al.  Markov chain local binary pattern and its application to video concept detection , 2008, 2008 15th IEEE International Conference on Image Processing.

[31]  Kang-Hyun Jo,et al.  Color-based Face Detection using Combination of Modified Local Binary Patterns and embedded Hidden Markov Models , 2006, 2006 SICE-ICASE International Joint Conference.