A review on separators for lithiumsulfur battery: Progress and prospects

Abstract Lithium-sulfur battery is considered as one of high performance batteries of the new generation owing to its extremely high theoretical capacity, energy density, good environmental protection and low cost. These features make it of great significance to serve as the next-generation battery especially in electric vehicles and portable devices. However, the practical application of lithium-sulfur battery is still hindered due to some obstacles including the low electrical and ionic conductivity of elemental sulfur, the discharge product Li 2 S and the “shuttle effect” caused by the dissolved polysulfide species. In this review, the current trends, fundamental studies and developments for lithium-sulfur battery separators including some modified functional and novel battery separators with the customized structure designs are presented and reviewed. The effects of different selections and the resulting properties of the separators affecting the overall lithium-sulfur battery performances are discussed as well. The current research directions and challenges associated with the use of battery separator and the future perspectives for this class of the battery separator are concluded as well.

[1]  Shaogang Wang,et al.  A Graphene–Pure‐Sulfur Sandwich Structure for Ultrafast, Long‐Life Lithium–Sulfur Batteries , 2014, Advanced materials.

[2]  Haizhu Sun,et al.  The Effective Design of a Polysulfide-Trapped Separator at the Molecular Level for High Energy Density Li-S Batteries. , 2016, ACS applied materials & interfaces.

[3]  P. Bradford,et al.  Hierarchical multi-component nanofiber separators for lithium polysulfide capture in lithium–sulfur batteries: an experimental and molecular modeling study , 2016 .

[4]  Xiaogang Zhang,et al.  Enhanced cycling performance and electrochemical reversibility of a novel sulfur-impregnated mesoporous hollow TiO2 sphere cathode for advanced Li-S batteries. , 2013, Nanoscale.

[5]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[6]  Shengbo Zhang,et al.  A simple approach for superior performance of lithium/sulphur batteries modified with a gel polymer electrolyte , 2014 .

[7]  Ma Ying,et al.  Improved performance of PVdF-HFP/PI nanofiber membrane for lithium ion battery separator prepared by a bicomponent cross-electrospinning method , 2014 .

[8]  A. Manthiram,et al.  Ultra-lightweight PANiNF/MWCNT-functionalized separators with synergistic suppression of polysulfide migration for Li–S batteries with pure sulfur cathodes , 2015 .

[9]  P. Kuo,et al.  High thermal and electrochemical stability of PVDF-graft-PAN copolymer hybrid PEO membrane for safety reinforced lithium-ion battery , 2016 .

[10]  B. Cheng,et al.  Fabrication of polyvinylidene fluoride tree-like nanofiber via one-step electrospinning , 2016 .

[11]  M. Pakizeh,et al.  The effect of functionalized MWCNT and SDS on the characteristic and performance of PAN ultrafiltration membrane , 2016 .

[12]  W. Duan,et al.  A few-layered Ti3C2 nanosheet/glass fiber composite separator as a lithium polysulphide reservoir for high-performance lithium–sulfur batteries , 2016 .

[13]  Haeshin Lee,et al.  Mussel-Inspired Surface Chemistry for Multifunctional Coatings , 2007, Science.

[14]  Lin Gu,et al.  Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. , 2012, Journal of the American Chemical Society.

[15]  Lehui Lu,et al.  Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. , 2014, Chemical reviews.

[16]  Zhaohui Li,et al.  Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery , 2009 .

[17]  Zhian Zhang,et al.  Nitrogen-doped porous hollow carbon sphere-decorated separators for advanced lithium–sulfur batteries , 2015 .

[18]  Zhen-liang Xu,et al.  Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method , 2009 .

[19]  D. Qu,et al.  Reduction mechanism of sulfur in lithium–sulfur battery: From elemental sulfur to polysulfide , 2016 .

[20]  P. Hammond,et al.  Structure-property studies of highly conductive layer-by-layer assembled membranes for fuel cell PEM applications , 2010 .

[21]  A. Manthiram,et al.  A Polyethylene Glycol‐Supported Microporous Carbon Coating as a Polysulfide Trap for Utilizing Pure Sulfur Cathodes in Lithium–Sulfur Batteries , 2014, Advanced materials.

[22]  S. Yao,et al.  Ketjen Black-MnO Composite Coated Separator For High Performance Rechargeable Lithium-Sulfur Battery , 2016 .

[23]  Hong‐Jie Peng,et al.  Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. , 2015, ACS nano.

[24]  Jiadeng Zhu,et al.  Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium–sulfur batteries , 2016 .

[25]  B. Cheng,et al.  Solution blowing of ZnO nanoflake-encapsulated carbon nanofibers as electrodes for supercapacitors , 2013 .

[26]  Jian Zhu,et al.  Ultrastrong Polyoxyzole Nanofiber Membranes for Dendrite-Proof and Heat-Resistant Battery Separators. , 2016, Nano letters.

[27]  Shuangyin Wang,et al.  Oxygen plasma modified separator for lithium sulfur battery , 2015 .

[28]  S. Dai,et al.  Non-isocyanate route to amides and polyamides through reactions of aryl N-phenylcarbamates with carboxylic acids , 2016, Journal of Polymer Research.

[29]  P. Novák,et al.  Performance-Enhancing Asymmetric Separator for Lithium-Sulfur Batteries. , 2016, ACS applied materials & interfaces.

[30]  F. Fu,et al.  Enhanced Performance of Lithium Sulfur Battery with a Reduced Graphene Oxide Coating Separator , 2015 .

[31]  Quazi Nahida Sultana,et al.  Processing and Performance of MOF (Metal Organic Framework)-Loaded PAN Nanofibrous Membrane for CO2 Adsorption , 2016, Journal of Materials Engineering and Performance.

[32]  Lei Li,et al.  Ion exchange membranes as electrolyte to improve high temperature capacity retention of LiMn2O4 cathode lithium-ion batteries. , 2012, Chemical communications.

[33]  Zhongqiang Shan,et al.  Sulfur electrode modified by bifunctional nafion/γ-Al2O3 membrane for high performance lithium–sulfur batteries , 2015 .

[34]  Ma Ying,et al.  Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate) , 2015 .

[35]  Kai Xie,et al.  Electrochemical performance of lithium/sulfur batteries using perfluorinated ionomer electrolyte with lithium sulfonyl dicyanomethide functional groups as functional separator , 2013 .

[36]  B. Cheng,et al.  Carbonaceous nanofiber-supported sulfonated poly(ether ether ketone) membranes for fuel cell applications , 2014 .

[37]  A. Manthiram,et al.  Polymer lithium–sulfur batteries with a Nafion membrane and an advanced sulfur electrode , 2015 .

[38]  Min Yang,et al.  Membranes in Lithium Ion Batteries , 2012, Membranes.

[39]  Lele Peng,et al.  Nanostructured conductive polymers for advanced energy storage. , 2015, Chemical Society reviews.

[40]  A. Manthiram,et al.  Eggshell Membrane-Derived Polysulfide Absorbents for Highly Stable and Reversible Lithium–Sulfur Cells , 2014 .

[41]  Zuankai Wang,et al.  Underwater Superoleophobic Membrane with Enhanced Oil–Water Separation, Antimicrobial, and Antifouling Activities , 2016 .

[42]  B. Cheng,et al.  A comparative study of alumina fibers prepared by electro-blown spinning (EBS) and solution blowing spinning (SBS) , 2015 .

[43]  Z. Bakenov,et al.  Poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/nanoclay composite gel polymer electrolyte for lithium/sulfur batteries , 2014, Journal of Solid State Electrochemistry.

[44]  Leon L. Shaw,et al.  Recent advances in lithium–sulfur batteries , 2014 .

[45]  Yong Huang,et al.  Fabrication of continuous highly ordered mesoporous silica nanofibre with core/sheath structure and its application as catalyst carrier. , 2011, Nanoscale.

[46]  Kai Xie,et al.  Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells , 2012 .

[47]  B. El-Zahab,et al.  Polymeric Ionic Liquid Gel Electrolyte for Room Temperature Lithium Battery Applications , 2016 .

[48]  Richard Van Noorden Sulphur back in vogue for batteries , 2013, Nature.

[49]  J. Schlenoff,et al.  Mechanical properties of reversibly cross-linked ultrathin polyelectrolyte complexes. , 2006, Journal of the American Chemical Society.

[50]  Yu Zhao,et al.  Sulfur‐Based Catholyte Solution with a Glass‐Ceramic Membrane for Li–S Batteries , 2016 .

[51]  Jun Liu,et al.  V2O5 Polysulfide Anion Barrier for Long-Lived Li–S Batteries , 2014 .

[52]  Yi Cui,et al.  Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface , 2014 .

[53]  Ruopian Fang,et al.  A trilayer separator with dual function for high performance lithium–sulfur batteries , 2016 .

[54]  Zhian Zhang,et al.  Polydopamine-coated separator for high-performance lithium-sulfur batteries , 2015, Journal of Solid State Electrochemistry.

[55]  Byung Gon Kim,et al.  A Lithium‐Sulfur Battery with a High Areal Energy Density , 2014 .

[56]  Shengping Wang,et al.  Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries , 2013 .

[57]  Fengxia Geng,et al.  W18O49 nanowire composites as novel barrier layers for Li–S batteries based on high loading of commercial micro-sized sulfur , 2016 .

[58]  J. Eckert,et al.  Improved cycling stability of lithium–sulfur batteries using a polypropylene-supported nitrogen-doped mesoporous carbon hybrid separator as polysulfide adsorbent , 2016 .

[59]  Haihui Wang,et al.  An inorganic membrane as a separator for lithium-ion battery , 2011 .

[60]  Hansong Cheng,et al.  High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte , 2016, Scientific Reports.

[61]  Chen Chen,et al.  Understanding glass fiber membrane used as a novel separator for lithium–sulfur batteries , 2016 .

[62]  Jing Liu,et al.  High performance lithium-sulfur batteries with a facile and effective dual functional separator , 2016 .

[63]  Ming Liu,et al.  Novel gel polymer electrolyte for high- performance lithium-sulfur batteries , 2016 .

[64]  G. Shi,et al.  Graphene materials for lithium–sulfur batteries , 2015 .

[65]  Zhian Zhang,et al.  Enhanced rate capability and cycle stability of lithium–sulfur batteries with a bifunctional MCNT@PEG-modified separator , 2015 .

[66]  Sean E. Doris,et al.  Polysulfide-Blocking Microporous Polymer Membrane Tailored for Hybrid Li-Sulfur Flow Batteries. , 2015, Nano letters.

[67]  Zhengcheng Zhang,et al.  Poly(acrylic acid) gel as a polysulphide blocking layer for high-performance lithium/sulphur battery , 2014 .

[68]  Jin Ma,et al.  Enhanced cycle performance of lithium-sulfur batteries using a separator modified with a PVDF-C layer. , 2014, ACS applied materials & interfaces.

[69]  A. Manthiram,et al.  Suppression of the polysulfide-shuttle behavior in Li–S batteries through the development of a facile functional group on the polypropylene separator , 2016 .

[70]  J. Muldoon,et al.  Ultrathin tunable ion conducting nanomembranes for encapsulation of sulfur cathodes , 2013 .

[71]  Kenville E. Hendrickson,et al.  Model Membrane‐Free Li–S Batteries for Enhanced Performance and Cycle Life , 2015, Advanced science.

[72]  Jiaqi Huang,et al.  Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects , 2015 .

[73]  A. Manthiram,et al.  Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte. , 2015, ACS applied materials & interfaces.

[74]  J. Schlenoff,et al.  Dynamic Viscoelasticity in Polyelectrolyte Multilayers: Nanodamping , 2006 .

[75]  Xiangyang Zhou,et al.  A high-level N-doped porous carbon nanowire modified separator for long-life lithium–sulfur batteries , 2016 .

[76]  V. M. Barragán,et al.  Chronopotentiometric study of a Nafion membrane in presence of glucose , 2016 .

[77]  A. Manthiram,et al.  Effective Stabilization of a High-Loading Sulfur Cathode and a Lithium-Metal Anode in Li-S Batteries Utilizing SWCNT-Modulated Separators. , 2016, Small.

[78]  G. Hu,et al.  A trilayer carbon nanotube/Al2O3/polypropylene separator for lithium-sulfur batteries , 2015, Ionics.

[79]  Yeqian Ge,et al.  A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries , 2016 .

[80]  Z. Bakenov,et al.  A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte , 2014, Nanoscale Research Letters.

[81]  O. Benada,et al.  Structure and surface properties of chitosan/PEO/gelatin nanofibrous membrane , 2016, Journal of Polymer Research.

[82]  Ji-Won Jung,et al.  Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review , 2016 .

[83]  Feng Li,et al.  Carbon materials for Li–S batteries: Functional evolution and performance improvement , 2016 .

[84]  Arumugam Manthiram,et al.  Lithium–Sulfur Batteries: Progress and Prospects , 2015, Advanced materials.

[85]  J. Choi,et al.  Poreless Separator and Electrolyte Additive for Lithium–Sulfur Batteries with High Areal Energy Densities , 2015 .

[86]  S. Moon,et al.  Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications , 2013 .

[87]  Shejun Hu,et al.  Lithium-sulfur cell with combining carbon nanofibers–sulfur cathode and gel polymer electrolyte , 2012 .

[88]  Il-Doo Kim,et al.  Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries , 2014 .

[89]  Xueping Gao,et al.  Current Status, Problems and Challenges in Lithium-sulfur Batteries: Current Status, Problems and Challenges in Lithium-sulfur Batteries , 2013 .

[90]  S. Yao,et al.  Separator modified by Ketjen black for enhanced electrochemical performance of lithium–sulfur batteries , 2016 .

[91]  Bruno Scrosati,et al.  Recent progress and remaining challenges in sulfur-based lithium secondary batteries--a review. , 2013, Chemical communications.

[92]  Charles M. Lieber,et al.  Nanoscience and the nano-bioelectronics frontier , 2015, Nano Research.

[93]  B. Cheng,et al.  Solution Blown Silicon Carbide Porous Nanofiber Membrane as Electrode Materials for Supercapacitors , 2016 .

[94]  H. Althues,et al.  Reduced polysulfide shuttle in lithium–sulfur batteries using Nafion-based separators , 2014 .

[95]  Xingxing Gu,et al.  A conductive interwoven bamboo carbon fiber membrane for Li–S batteries , 2015 .

[96]  Mark Wild,et al.  Lithium sulfur batteries, a mechanistic review , 2015 .

[97]  Huanhuan Li,et al.  A hydrophilic separator for high performance lithium sulfur batteries , 2015 .

[98]  U. Paik,et al.  Two-dimensional Nafion nanoweb anion-shield for improved electrochemical performances of lithium–sulfur batteries , 2016 .

[99]  K. Jacob,et al.  Conjugation of silica nanoparticles with cellulose acetate/polyethylene glycol 300 membrane for reverse osmosis using MgSO4 solution. , 2016, Carbohydrate polymers.

[100]  T. Nestler,et al.  Separators - Technology review: Ceramic based separators for secondary batteries , 2014 .

[101]  Rongguo Wang,et al.  PEG-imbedded PEO membrane developed by a novel highly efficient strategy toward superior gas transport performance. , 2015, Macromolecular rapid communications.

[102]  J. Pereira‐Ramos,et al.  Structural and Electrochemical Properties of ω ­ Li x V 2 O 5 ( 0.4 ⩽ x ⩽ 3 ) as Rechargeable Cathodic Material for Lithium Batteries , 2005 .

[103]  Weidong Zhou,et al.  Polydopamine-coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries. , 2014, Nano letters.

[104]  Haijun Yang,et al.  Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high-performance lithium-ion battery. , 2016, Carbohydrate polymers.

[105]  Arumugam Manthiram,et al.  Electrochemically Stable Rechargeable Lithium–Sulfur Batteries with a Microporous Carbon Nanofiber Filter for Polysulfide , 2015 .

[106]  Chengwei Wang,et al.  Synergistic Ultrathin Functional Polymer-Coated Carbon Nanotube Interlayer for High Performance Lithium-Sulfur Batteries. , 2016, ACS applied materials & interfaces.

[107]  Haoshen Zhou,et al.  Metal–organic framework-based separator for lithium–sulfur batteries , 2016, Nature Energy.

[108]  Li Wang,et al.  Nafion coated sulfur–carbon electrode for high performance lithium–sulfur batteries , 2014 .

[109]  Yongming Zhang,et al.  High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes , 2012 .

[110]  Li Li,et al.  Sulfur/Polythiophene with a Core/Shell Structure: Synthesis and Electrochemical Properties of the Cathode for Rechargeable Lithium Batteries , 2011 .

[111]  L. Giebeler,et al.  Enhanced polysulphide redox reaction using a RuO2 nanoparticle-decorated mesoporous carbon as functional separator coating for advanced lithium-sulphur batteries. , 2016, Chemical communications.

[112]  Z. Wen,et al.  A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries. , 2016, Chemical communications.

[113]  J. Eckert,et al.  Functional Mesoporous Carbon‐Coated Separator for Long‐Life, High‐Energy Lithium–Sulfur Batteries , 2015 .

[114]  J. Eckert,et al.  Reconfiguration of lithium sulphur batteries: “Enhancement of Li–S cell performance by employing a highly porous conductive separator coating” , 2016 .

[115]  Feng Li,et al.  A Flexible Sulfur‐Graphene‐Polypropylene Separator Integrated Electrode for Advanced Li–S Batteries , 2015, Advanced materials.

[116]  Zhian Zhang,et al.  Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries , 2014 .

[117]  Zhijun Ren,et al.  Effect of TiO 2 nanoparticle size on the performance of PVDF membrane , 2006 .

[118]  Daihua Tang,et al.  Single-molecule behavior of dendritic poly(ethylene glycol) structures towards lithium ions. , 2009, Chemistry.

[119]  B. Cheng,et al.  Electrospun poly(vinylidene‐fluoride)/POSS nanofiber membrane‐based polymer electrolytes for lithium ion batteries , 2017 .

[120]  S. Zinadini,et al.  A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles , 2011 .

[121]  V. Zucolotto,et al.  Molecular-Level Manipulation of V2O5/Polyaniline Layer-by-Layer Films To Control Electrochromogenic and Electrochemical Properties , 2004 .

[122]  J. Hassoun,et al.  A lithium-ion sulfur battery using a polymer, polysulfide-added membrane , 2015, Scientific Reports.

[123]  A. Manthiram,et al.  High-Performance Li-S Batteries with an Ultra-lightweight MWCNT-Coated Separator. , 2014, The journal of physical chemistry letters.

[124]  Markus Klose,et al.  Synergistically Enhanced Polysulfide Chemisorption Using a Flexible Hybrid Separator with N and S Dual-Doped Mesoporous Carbon Coating for Advanced Lithium-Sulfur Batteries. , 2016, ACS applied materials & interfaces.

[125]  P. Novák,et al.  Taming the polysulphide shuttle in Li–S batteries by plasma-induced asymmetric functionalisation of the separator , 2015 .

[126]  P. Kuo,et al.  High thermal and electrochemical stability of a SiO2 nanoparticle hybird–polyether cross-linked membrane for safety reinforced lithium-ion batteries , 2016 .

[127]  A. Hollenkamp,et al.  Suppressed Polysulfide Crossover in Li-S Batteries through a High-Flux Graphene Oxide Membrane Supported on a Sulfur Cathode. , 2016, ACS nano.

[128]  Yongyao Xia,et al.  A scalable hybrid separator for a high performance lithium-sulfur battery. , 2015, Chemical communications.

[129]  B. Zhang,et al.  Solution blowing of continuous carbon nanofiber yarn and its electrochemical performance for supercapacitors , 2014 .

[130]  Benhe Zhong,et al.  Preparation of sodium trimetaphosphate and its application as an additive agent in a novel polyvinylidene fluoride based gel polymer electrolyte in lithium sulfur batteries , 2015 .

[131]  Hong‐Jie Peng,et al.  Rational Integration of Polypropylene/Graphene Oxide/Nafion as Ternary-Layered Separator to Retard the Shuttle of Polysulfides for Lithium-Sulfur Batteries. , 2016, Small.

[132]  Xueping Gao,et al.  A Polyaniline‐Coated Sulfur/Carbon Composite with an Enhanced High‐Rate Capability as a Cathode Material for Lithium/Sulfur Batteries , 2012 .

[133]  A. Manthiram,et al.  Bifunctional Separator with a Light‐Weight Carbon‐Coating for Dynamically and Statically Stable Lithium‐Sulfur Batteries , 2014 .

[134]  Kyu-Tae Lee,et al.  Inhibiting the shuttle effect in lithium–sulfur batteries using a layer-by-layer assembled ion-permselective separator , 2014 .

[135]  Zhian Zhang,et al.  A functional carbon layer-coated separator for high performance lithium sulfur batteries , 2015 .

[136]  Wenlong Cai,et al.  A novel laminated separator with multi functions for high-rate dischargeable lithium–sulfur batteries , 2015 .

[137]  S. S. Madaeni,et al.  Fabrication of PES nanofiltration membrane by simultaneous use of multi-walled carbon nanotube and surface graft polymerization method: Comparison of MWCNT and PAA modified MWCNT , 2013 .

[138]  Aravindaraj G. Kannan,et al.  Effective Suppression of Dendritic Lithium Growth Using an Ultrathin Coating of Nitrogen and Sulfur Codoped Graphene Nanosheets on Polymer Separator for Lithium Metal Batteries. , 2015, ACS applied materials & interfaces.

[139]  Xin-Bing Cheng,et al.  Janus Separator of Polypropylene‐Supported Cellular Graphene Framework for Sulfur Cathodes with High Utilization in Lithium–Sulfur Batteries , 2015, Advanced science.

[140]  Yusheng Yang,et al.  High performance lithium–sulfur batteries with a permselective sulfonated acetylene black modified separator , 2016 .

[141]  Xiaoyun He,et al.  Methoxypolyethylene glycol grafting on polypropylene membrane for enhanced antifouling characteristics – Effect of pendant length and grafting density , 2016 .

[142]  Z. Wen,et al.  Electronic and ionic co-conductive coating on the separator towards high-performance lithium–sulfur batteries , 2016 .

[143]  Hong‐Jie Peng,et al.  Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries , 2014 .

[144]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[145]  Qingfu Wang Robust and thermal-enhanced melamine formaldehyde-modified glassfiber composite separator for high-performance lithium batteries , 2015 .

[146]  Hong Xiaobin,et al.  Analysis of the Sulfur Cathode Capacity Fading Mechanism and Review of the Latest Development for Li-S Battery , 2013 .