Ribbon-based transfinite surfaces

Abstract One major issue in CAGD is to model complex objects using free-form surfaces of general topology. A natural approach is curvenet-based design, where designers directly create and modify feature curves. These are interpolated by smoothly connected, multi-sided patches, which can be represented by transfinite surfaces, defined as a combination of side interpolants or ribbons. A ribbon embeds Hermite data, i.e., prescribed positional and cross-derivative functions along boundary curves. The paper focuses on two transfinite schemes: the first is an enhanced and extended variant of a multi-sided generalization of the classical Coons patch ( Varady et al., 2011 ); the second one is based on a new concept of combining doubly curved composite ribbons, each one interpolating three adjacent sides. Main contributions include various ribbon parameterizations that surpass former methods in quality and computational efficiency. It is proven that these surfaces smoothly interpolate the prescribed ribbon data. Both formulations are based on non-regular convex polygonal domains and distance-based, rational blending functions. A few examples illustrate the results.

[1]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[2]  S. A. Coons SURFACES FOR COMPUTER-AIDED DESIGN OF SPACE FORMS , 1967 .

[3]  Rida T. Farouki,et al.  Existence conditions for Coons patches interpolating geodesic boundary curves , 2009, Comput. Aided Geom. Des..

[4]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[5]  Carlo H. Séquin,et al.  Surface design with minimum energy networks , 1991, SMA '91.

[6]  M. A. Sabin,et al.  Some negative results in N sided patches , 1986 .

[7]  Adi Levin,et al.  Interpolating nets of curves by smooth subdivision surfaces , 1999, SIGGRAPH.

[8]  Kai Hormann,et al.  Mean value coordinates for arbitrary planar polygons , 2006, TOGS.

[9]  Jörg Peters,et al.  Smooth free-form surfaces over irregular meshes generalizing quadratic splines , 1993, Comput. Aided Geom. Des..

[10]  Jörg Peters,et al.  Bicubic polar subdivision , 2007, TOGS.

[11]  Malcolm A. Sabin Transfinite Surface Interpolation , 1994, IMA Conference on the Mathematics of Surfaces.

[12]  Jörg Peters,et al.  A geometric criterion for smooth interpolation of curve networks , 2009, Symposium on Solid and Physical Modeling.

[13]  Weiyin Ma,et al.  Loop subdivision surfaces interpolating B-spline curves , 2009, Comput. Aided Des..

[14]  W. J. Gordon,et al.  Smooth interpolation in triangles , 1973 .

[15]  Kiyotaka Kato N-sided Surface Generation from Arbitrary Boundary Edges , 2000 .

[16]  Tamás Várady,et al.  Transfinite Surface Patches Using Curved Ribbons , 2013, Eurographics.

[17]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[18]  Tamás Várady,et al.  Transfinite surface interpolation with interior control , 2012, Graph. Model..

[19]  Ahmad H. Nasri,et al.  Designing Catmull-Clark subdivision surfaces with curve interpolation constraints , 2002, Comput. Graph..

[20]  Charles T. Loop,et al.  Approximating Catmull-Clark subdivision surfaces with bicubic patches , 2008, TOGS.

[21]  K. Kato Generation of N-sided surface patches with holes , 1991, Comput. Aided Des..

[22]  Bert Jüttler,et al.  Computation of rotation minimizing frames , 2008, TOGS.

[23]  J. A. Gregory Smooth interpolation without twist constraints , 1974 .

[24]  John A. Gregory,et al.  A pentagonal surface patch for computer aided geometric design , 1984, Comput. Aided Geom. Des..

[25]  G. Nielson The side-vertex method for interpolation in triangles☆ , 1979 .

[26]  Tamás Várady,et al.  Transfinite surface interpolation over irregular n-sided domains , 2011, Comput. Aided Des..

[27]  Solveig Bruvoll,et al.  Transfinite mean value interpolation in general dimension , 2010, J. Comput. Appl. Math..

[28]  Cindy Grimm,et al.  Just DrawIt: a 3D sketching system , 2012, SBIM '12.

[29]  John A. Gregory,et al.  A C2 polygonal surface patch , 1989, Comput. Aided Geom. Des..

[30]  Jörg Peters,et al.  Joining smooth patches around a vertex to form a Ck surface , 1992, Comput. Aided Geom. Des..

[31]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[32]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .

[33]  Christopher Dyken,et al.  Transfinite mean value interpolation , 2009, Comput. Aided Geom. Des..

[34]  Cindy Grimm,et al.  Just DrawIt : a 3 D sketching system , 2012 .

[35]  Gerald E. Farin,et al.  Discrete Coons patches , 1999, Comput. Aided Geom. Des..

[36]  Ravin Balakrishnan,et al.  EverybodyLovesSketch: 3D sketching for a broader audience , 2009, UIST '09.

[37]  David Bommes,et al.  Global Structure Optimization of Quadrilateral Meshes , 2011, Comput. Graph. Forum.

[38]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[39]  Tamás Várady,et al.  Overlap patches: a new scheme for interpolating curve networks with n-sided regions , 1991, Comput. Aided Geom. Des..

[40]  Kun Gao,et al.  Multi-sided Attribute Based Modeling , 2005, IMA Conference on the Mathematics of Surfaces.

[41]  Josiah Manson,et al.  Moving Least Squares Coordinates , 2010, Comput. Graph. Forum.

[42]  D. Plowman,et al.  A Practical Implementation of Vertex Blend Surfaces using an n-Sided Patch , 1994, IMA Conference on the Mathematics of Surfaces.