Intrinsic time resolution of 3D-trench silicon pixels for charged particle detection

In the last years, high-resolution time tagging has emerged as the tool to tackle the problem of high-track density in the detectors of the next generation of experiments at particle colliders. Time resolutions below 50ps and event average repetition rates of tens of MHz on sensor pixels having a pitch of 50$\mu$m are typical minimum requirements. This poses an important scientific and technological challenge on the development of particle sensors and processing electronics. The TIMESPOT initiative (which stands for TIME and SPace real-time Operating Tracker) aims at the development of a full prototype detection system suitable for the particle trackers of the next-to-come particle physics experiments. This paper describes the results obtained on the first batch of TIMESPOT silicon sensors, based on a novel 3D MEMS (micro electro-mechanical systems) design. Following this approach, the performance of other ongoing silicon sensor developments has been matched and overcome, while using a technology which is known to be robust against radiation degradation. A time resolution of the order of 20ps has been measured at room temperature suggesting also possible improvements after further optimisations of the front-end electronics processing stage.

Enrico Robutti | Gian-Franco Dalla Betta | Andrea Lampis | Italy | Lucio Anderlini | Michela Garau | Alessandro Cardini | Marta Ruspa | Sabina Ronchin | Andrea Bizzeti | Roberto Mendicino | Maurizio Boscardin | Roberto Mulargia | Mauro Aresti | Marco Ferrero | Giulio Forcolin | Adriano Lai | Angelo Loi | Chiara Lucarelli | Margherita Obertino | Stefania Vecchi INFN Sezione di Firenze Italy | INFN Sezione di Cagliari Italy | Fondazione Bruno Kessler Trento Italy | INFN TIFPA Trento Italy | INFN Sezione di Torino | INFN Sezione di Genova Italy | INFN Sezione di Ferrara Italy | Dipartimento di Scienze Fisiche Informatiche e Matematiche dell Italy | Dipartimento di Ingegneria Industriale Universita di Trento Italy | Dipartimento di Scienze del Farmaco Universita del Piemonte Ori Italy | Dipartimento di Fisica dell'Universita di Cagliari Italy | Dipartimento di Fisica e Astronomia dell'Universita degli Studi Italy | Dipartimento di Fisica dell'Universita di Genova Italy | Dipartimento di Scienze Agrarie | Forestali ed Alimentari dell'Universita di Torino Italy | Dipartimento di Scienze della Salute dell'Universita di Torino Italy | Italy. | E. Robutti | M. Ruspa | A. Lai | R. Mulargia | G. Betta | A. Bizzeti | M. Boscardin | L. Anderlini | A. Cardini | A. Loi | G. Forcolin | M. Garau | A. Lampis | R. Mendicino | S. Ronchin | M. Ferrero | M. Aresti | I. Torino | I. S. D. C. Italy | C. Lucarelli | M. Obertino | Stefania Vecchi Infn Sezione di Firenze Italy | Infn Tifpa Trento Italy | D. D. F. D. D. C. Italy

[1]  S. Ramo Currents Induced by Electron Motion , 1939, Proceedings of the IRE.

[2]  C. Kenney,et al.  3D — A proposed new architecture for solid-state radiation detectors , 1997 .

[3]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[4]  F. Campabadal,et al.  Comparison of radiation hardness of P-in-N, N-in-N, and N-in-P silicon pad detectors , 2005, IEEE Transactions on Nuclear Science.

[5]  S. Incerti,et al.  Geant4 developments and applications , 2006, IEEE Transactions on Nuclear Science.

[6]  Rafael Ballabriga,et al.  Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements , 2007 .

[7]  Daniele Passeri,et al.  Energy loss measurement for charged particles in very thin silicon layers , 2011 .

[8]  Franz Laermer,et al.  Deep reactive ion etching , 2020, Handbook of Silicon Based MEMS Materials and Technologies.

[9]  Lucio Rossi,et al.  High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report , 2015 .

[10]  L. Rossi,et al.  Chapter 1: High Luminosity Large Hadron Collider HL-LHC , 2016, 1705.08830.

[11]  I. A. Monroy,et al.  Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era , 2018, 1808.08865.

[12]  G. Pellegrini,et al.  Radiation hardness of small-pitch 3D pixel sensors up to a fluence of 3×1016 neq/cm2 , 2018, Journal of Instrumentation.

[13]  Francois Vasey,et al.  Strategic RD Programme on Technologies for Future Experiments , 2018 .

[14]  J. Jentzsch,et al.  Production and integration of the ATLAS Insertable B-Layer , 2018, 1803.00844.

[15]  Nicola De Filippis,et al.  FCC-hh: The Hadron Collider , 2019, The European Physical Journal Special Topics.

[16]  Nicola De Filippis,et al.  FCC Physics Opportunities , 2019, The European Physical Journal C.

[17]  T. Sjöstrand,et al.  Future Circular Collider : Vol. 3 The Hadron Collider (FCC-hh) , 2019 .

[18]  J. T. Childers,et al.  FCC-ee: The Lepton Collider , 2019, The European Physical Journal Special Topics.

[19]  Maurizio Boscardin,et al.  Development of 3D trenched-electrode pixel sensors with improved timing performance , 2019, Journal of Instrumentation.

[20]  Shehu S. Abdussalam,et al.  HE-LHC: The High-Energy Large Hadron Collider , 2019, The European Physical Journal Special Topics.

[21]  M. M. Obertino The PPS tracking system: performance in LHC Run2 and prospects for LHC Run3 , 2020 .

[22]  F. Ficorella,et al.  Properties of FBK UFSDs after neutron and proton irradiation up to 6⋅ 1015 neq/cm2 , 2018, Journal of Instrumentation.

[23]  E. Robutti,et al.  First results of the TIMESPOT project on developments on fast sensors for future vertex detectors , 2020 .

[24]  Chiara Rizzi,et al.  A High-Granularity Timing Detector for the ATLAS Phase-II upgrade , 2021, Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020).