A methanol/dioxygen biofuel cell that uses NAD+-dependent dehydrogenases as catalysts: application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials

[1]  K. Kano,et al.  Reactions between diaphorase and quinone compounds in bioelectrocatalytic redox reactions of NADH and NAD , 1995 .

[2]  B. Davis Workshop on Basic Research Needs for Vehicles of the Future , 1995 .

[3]  Michael E. Himmel,et al.  Enzymatic conversion of biomass for fuels production. , 1994 .

[4]  A. Fry,et al.  Electroenzymatic synthesis (regeneration of NADH coenzyme) : use of nafion ion exchange films for immobilization of enzyme and redox mediator , 1994 .

[5]  O. Miyawaki,et al.  Electrochemical bioreactor with regeneration of NAD+ by rotating graphite disk electrode with PMS adsorbed. , 1992, Enzyme and microbial technology.

[6]  J. Moiroux,et al.  Complete conversion of L-lactate into D-lactate. A generic approach involving enzymic catalysis, electrochemical oxidation of NADH and electrochemical reduction of pyruvate , 1992 .

[7]  T. Matsue,et al.  Electron-transfer from NADH dehydrogenase to polypyrrole and its applicability to electrochemical oxidation of NADH , 1991 .

[8]  Matsuhiko Nishizawa,et al.  An enzyme switch sensitive to NADH , 1991 .

[9]  L. Gorton,et al.  A comparative study of some 3,7-diaminophenoxazine derivatives and related compounds for electrocatalytic oxidation of NADH , 1990 .

[10]  G. Kreysa,et al.  Bioelectrochemical Fuel Cells , 1990 .

[11]  Björn Persson,et al.  A chemically modified graphite electrode for electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide based on a phenothiazine derivative, 3-β-naphthoyl-toluidine blue O , 1990 .

[12]  T. Matsue,et al.  Effect of viologen structure on electroreduction of NAD+ catalyzed by diaphorase immobilized on electrodes. , 1989 .

[13]  J. Moiroux,et al.  Electrochemical regeneration of NAD+. A new evaluation of its actual yield , 1988 .

[14]  [62] Biochemical energy conversion by immobilized photosynthetic bacteria , 1988 .

[15]  G. Whitesides,et al.  Cofactor regeneration for enzyme-catalysed synthesis. , 1988, Biotechnology & genetic engineering reviews.

[16]  Carmen A. Vega,et al.  Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens , 1987 .

[17]  G. Whitesides,et al.  Regeneration of nicotinamide cofactors for use in organic synthesis , 1987, Applied biochemistry and biotechnology.

[18]  P. Yue,et al.  Enzymatic oxidation of C1 compounds in a biochemical fuel cell , 1986 .

[19]  Lo Gorton,et al.  Chemically modified electrodes for the electrocatalytic oxidation of nicotinamide coenzymes , 1986 .

[20]  Björn Persson,et al.  Biofuel anode based on d-glucose dehydrogenase, nicotinamide adenine dinucleotide and a modified electrode , 1985 .

[21]  G. Whitesides,et al.  Enzyme-catalyzed organic synthesis: a comparison of strategies for in situ regeneration of NAD from NADH , 1985 .

[22]  Kazuko Tanaka,et al.  Bioelectrochemical fuel‐cells operated by the cyanobacterium, Anabaena variabilis , 1985 .

[23]  C. Thurston,et al.  Glucose Metabolism in a Microbial Fuel Cell. Stoichiometry of Product Formation in a Thionine-mediated Proteus vulgaris Fuel Cell and its Relation to Coulombic Yields , 1985 .

[24]  L. Miller,et al.  Electrochemical oxidation of NADH: Kinetic control by product inhibition and surface coating , 1984 .

[25]  J. Moiroux,et al.  Enzymic electrocatalysis: electrochemical regeneration of NAD+ with immobilized lactate dehydrogenase modified electrodes , 1984 .

[26]  Cees Veeger,et al.  Use of a bioelectrochemical cell for the synthesis of (bio)chemicals , 1984 .

[27]  J. Schultz,et al.  Methods of Enzymatic Analysis, Vol. III: Enzymes 1: Oxidoreductases, Transferases, von H. U. Bergmeyer, 18 Abb., 43 Tab., XXVI, 605 S., Preis DM258,00, Verlag Chemie, Weinheim — Deerfield Beach/Florida — Basel 1983 , 1984 .

[28]  I. Karube,et al.  Biochemical Energy Conversion by Immobilized Whole Cells , 1983 .

[29]  H. Hill,et al.  Bioelectrochemical fuel cell and sensor based on a quinoprotein, alcohol dehydrogenase , 1983 .

[30]  Shuichi Suzuki,et al.  BIOCHEMICAL ENERGY CONVERSION BY IMMOBILIZED WHOLE CELLS , 1981 .

[31]  I. Karube,et al.  Biochemical energy conversion using immobilized whole cells of Clostridium butyricum. , 1980, Biochimie.

[32]  R. Ghosh,et al.  Phenazine ethosulfate as a preferred electron acceptor to phenazine methosulfate in dye-linked enzyme assays. , 1979, Analytical biochemistry.

[33]  P. Elving,et al.  Adsorption phenomena in the NAD+/NADH system at glassy carbon electrodes , 1979 .

[34]  P. Elving,et al.  Effects of adsorption, electrode material, and operational variables on the oxidation of dihydronicotinamide adenine dinucleotide at carbon electrodes , 1978 .

[35]  I. Karube,et al.  Biochemical fuel cell utilizing immobilized cells of clostridium butyricum , 1977 .

[36]  W. V. Hees A Bacterial Methane Fuel Cell , 1965 .

[37]  A. Yahiro,et al.  BIOELECTROCHEMISTRY. I. ENZYME UTILIZING BIO-FUEL CELL STUDIES. , 1964, Biochimica et biophysica acta.

[38]  J. Davis,et al.  Preliminary Experiments on a Microbial Fuel Cell , 1962, Science.

[39]  V. Massey,et al.  Studies on the reaction mechanism of lipoyl dehydrogenase. , 1961, Biochimica et biophysica acta.

[40]  L. Reed,et al.  alpha-Keto acid dehydrogenation complexes. III. Purification and properties of dihydrolipoic dehydrogenase of Escherichia coli. , 1960, The Journal of biological chemistry.

[41]  N. Savage Preparation and properties of highly purified diaphorase. , 1957, The Biochemical journal.

[42]  Rodkey Fl Oxidation-reduction potentials of the diphosphopyridine nucleotide system. , 1952 .

[43]  S. Ochoa,et al.  Enzymatic synthesis of citric acid. IV. Pyruvate as acetyl donor. , 1951, The Journal of biological chemistry.

[44]  J. Littlefield,et al.  Studies on alpha-ketoglutaric oxidase. I. Formation of "active" succinate. , 1951, The Journal of biological chemistry.