A homogeneous relaxation low mach number model

In the present paper, we investigate a new homogeneous relaxation model describing the behaviour of a two-phase fluid flow in a low Mach number regime, which can be obtained as a low Mach number approximation of the well-known HRM. For this specific model, we derive an equation of state to describe the thermodynamics of the two-phase fluid. We prove some theoretical properties satisfied by the solutions of the model, and provide a well-balanced scheme. To go further, we investigate the instantaneous relaxation regime, and prove the formal convergence of this model towards the low Mach number approximation of the well-known HEM. An asymptotic-preserving scheme is introduced to allow numerical simulations of the coupling between spatial regions with different relaxation characteristic times.

[1]  Stéphane Dellacherie On a low Mach nuclear core model , 2012 .

[2]  Hailong Li,et al.  CO2 pipeline integrity: A new evaluation methodology , 2011 .

[3]  Randi Moe,et al.  The dynamic two-fluid model OLGA; Theory and application , 1991 .

[4]  Gloria Faccanoni Étude d'un modèle fin de changement de phase liquide-vapeur. Contribution à l'étude de la crise d'ébullition. , 2008 .

[5]  Philippe Helluy,et al.  Relaxation models of phase transition flows , 2006 .

[6]  O. Hurisse,et al.  A homogeneous model for compressible three-phase flows involving heat and mass transfer. , 2019, ESAIM: Proceedings and Surveys.

[7]  Marco de Lorenzo,et al.  Modelling and numerical simulation of metastable two-phase flows , 2018 .

[8]  Erell Jamelot,et al.  A simple monodimensional model coupling an enthalpy transport equation and a neutron diffusion equation , 2016, Appl. Math. Lett..

[9]  J. Kestin,et al.  Physical aspects of the relaxation model in two-phase flow , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  J. Seynhaeve,et al.  Homogeneous two-phase flow models and accurate steam-water table look-up method for fast transient simulations , 2017 .

[11]  Ahmad Izani Md. Ismail,et al.  A well-balanced scheme for a one-pressure model of two-phase flows , 2009 .

[12]  Rémi Abgrall,et al.  Modelling phase transition in metastable liquids: application to cavitating and flashing flows , 2008, Journal of Fluid Mechanics.

[13]  Jean-Marc Hérard,et al.  A two-fluid hyperbolic model in a porous medium , 2010 .

[14]  Halvor Lund,et al.  A Hierarchy of Relaxation Models for Two-Phase Flow , 2012, SIAM J. Appl. Math..

[15]  Eric W. Lemmon,et al.  Thermophysical Properties of Fluid Systems , 1998 .

[16]  Horst Stöcker,et al.  Thermodynamics and Statistical Mechanics , 2002 .

[17]  A. S. Almgren,et al.  Low mach number modeling of type Ia supernovae. I. Hydrodynamics , 2005 .

[18]  Richard Saurel,et al.  Modelling evaporation fronts with reactive Riemann solvers , 2005 .

[19]  Michael Zingale,et al.  Low Mach Number Modeling of Type Ia Supernovae , 2005 .

[20]  P. Helluy,et al.  A HIERARCHY OF NON-EQUILIBRIUM TWO-PHASE FLOW MODELS , 2019 .

[21]  D. Stewart,et al.  Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations , 2001 .

[22]  Andrew J. Majda,et al.  Simplified Equations for Low Mach Number Combustion with Strong Heat Release , 1991 .

[23]  Philippe Helluy,et al.  Finite volume simulation of cavitating flows , 2005 .

[24]  Shi Jin,et al.  A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..

[25]  O. Hurisse,et al.  Application of an homogeneous model to simulate the heating of two-phase flows , 2014 .

[26]  R. Callen,et al.  Thermodynamics and an Introduction to Thermostatistics, 2nd Edition , 1985 .

[27]  Tore Flåtten,et al.  Relaxation two-phase flow models and the subcharacteristic condition , 2011 .

[28]  Michel Barret,et al.  Computation of Flashing Flows In Variable Cross-Section Ducts , 2000 .

[29]  Olivier D. Lafitte,et al.  Numerical Results for the Coupling of a Simple Neutronics Diffusion Model and a Simple Hydrodynamics Low Mach Number Model without Coupling Codes , 2016, 2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC).

[30]  Haihua Zhao,et al.  RELAP-7 Theory Manual , 2015 .

[31]  Robert Stieglitz,et al.  Validation of NEPTUNE-CFD Two-Phase Flow Models Using Experimental Data , 2014 .

[32]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[33]  H. Paillere,et al.  Comparison of low Mach number models for natural convection problems , 2000 .

[34]  Philippe Fillion,et al.  FLICA-OVAP: A new platform for core thermal–hydraulic studies , 2011 .

[35]  O. Metayer,et al.  Élaboration des lois d'état d'un liquide et de sa vapeur pour les modèles d'écoulements diphasiques Elaborating equations of state of a liquid and its vapor for two-phase flow models , 2004 .

[36]  Shi Jin ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .

[37]  Richard Saurel,et al.  The Noble-Abel Stiffened-Gas equation of state , 2016 .

[38]  D. Bestion,et al.  The physical closure laws in the CATHARE code , 1990 .

[39]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[40]  Stéphane Dellacherie,et al.  Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law , 2014 .

[41]  Steven F. Son,et al.  Two-Phase Modeling of DDT in Granular Materials: Reduced Equations , 2000 .

[42]  P. Embid,et al.  Well-posedness of the nonlinear equations for zero mach number combustion , 1987 .

[43]  Grégoire Allaire,et al.  A five-equation model for the simulation of interfaces between compressible fluids , 2002 .

[44]  Léon Bolle,et al.  The non-equilibrium relaxation model for one-dimensional flashing liquid flow , 1996 .

[45]  Jean-Marc Hérard,et al.  A method to couple HEM and HRM two-phase flow models , 2009 .

[46]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[47]  S. Dellacherie,et al.  Accurate steam-water equation of state for two-phase flow LMNC model with phase transition , 2019, Applied Mathematical Modelling.

[48]  Hélène Mathis Etude théorique et numérique des écoulements avec transition de phase , 2010 .

[49]  G. Linga,et al.  A hierarchy of non-equilibrium two-phase flow models , 2018, ESAIM: Proceedings and Surveys.

[50]  Janez Gale,et al.  TWO-FLUID MODEL OF THE WAHA CODE FOR SIMULATIONS OF WATER HAMMER TRANSIENTS , 2008 .

[51]  Shi Jin Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1995 .