Sharp Inequalities for $f$ -Divergences
暂无分享,去创建一个
[1] Thomas M. Cover,et al. Elements of information theory (2. ed.) , 2006 .
[2] Igor Vajda,et al. On Pairs of $f$ -Divergences and Their Joint Range , 2010, IEEE Transactions on Information Theory.
[3] Friedrich Liese. $\phi $PHI-divergences, sufficiency, Bayes sufficiency, and deficiency , 2012 .
[4] Imre Bárány,et al. Notes About the Carathéodory Number , 2012, Discrete & Computational Geometry.
[5] Aditya Guntuboyina. Lower Bounds for the Minimax Risk Using $f$-Divergences, and Applications , 2011, IEEE Transactions on Information Theory.
[6] Amiel Feinstein,et al. Information and information stability of random variables and processes , 1964 .
[7] Igor Vajda,et al. On Divergences and Informations in Statistics and Information Theory , 2006, IEEE Transactions on Information Theory.
[8] Imre Csiszár,et al. Information Theory and Statistics: A Tutorial , 2004, Found. Trends Commun. Inf. Theory.
[9] Flemming Topsøe,et al. Information-theoretical optimization techniques , 1979, Kybernetika.
[10] Peter Harremoës,et al. Refinements of Pinsker's inequality , 2003, IEEE Trans. Inf. Theory.
[11] K. Marton. Bounding $\bar{d}$-distance by informational divergence: a method to prove measure concentration , 1996 .
[12] Katalin Marton,et al. A simple proof of the blowing-up lemma , 1986, IEEE Trans. Inf. Theory.
[13] Bin Yu. Assouad, Fano, and Le Cam , 1997 .
[14] Gustavo L. Gilardoni. On the minimum f-divergence for given total variation , 2006 .
[15] Josip Pečarić,et al. A note on Jensen's inequality for 2D-convex functions , 2013 .
[16] Friedrich Liese,et al. φ-DIVERGENCES , SUFFICIENCY , BAYES SUFFICIENCY , AND DEFICIENCY , 2012 .
[17] Grace L. Yang,et al. Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics. , 1997 .
[18] Ferdinand Österreicher,et al. Statistical information and discrimination , 1993, IEEE Trans. Inf. Theory.
[19] A. Barron. ENTROPY AND THE CENTRAL LIMIT THEOREM , 1986 .
[20] S. Kullback,et al. A lower bound for discrimination information in terms of variation (Corresp.) , 1967, IEEE Trans. Inf. Theory.
[21] Solomon Kullback,et al. Correction to A Lower Bound for Discrimination Information in Terms of Variation , 1970, IEEE Trans. Inf. Theory.
[22] L. L. Cam,et al. Asymptotic Methods In Statistical Decision Theory , 1986 .
[23] Mark D. Reid,et al. Information, Divergence and Risk for Binary Experiments , 2009, J. Mach. Learn. Res..
[24] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[25] R. Phelps. Lectures on Choquet's Theorem , 1966 .
[26] J. Kemperman,et al. On the Optimum Rate of Transmitting Information , 1969 .
[27] K. Marton. A measure concentration inequality for contracting markov chains , 1996 .
[28] Alison L Gibbs,et al. On Choosing and Bounding Probability Metrics , 2002, math/0209021.
[29] Flemming Topsøe,et al. Some inequalities for information divergence and related measures of discrimination , 2000, IEEE Trans. Inf. Theory.
[30] S. M. Ali,et al. A General Class of Coefficients of Divergence of One Distribution from Another , 1966 .
[31] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[32] Igor Vajda,et al. Note on discrimination information and variation (Corresp.) , 1970, IEEE Trans. Inf. Theory.