Mesh generation for implicit geometries

We present new techniques for generation of unstructured meshes for geometries specified by implicit functions. An initial mesh is iteratively improved by solving for a force equilibrium in the element edges, and the boundary nodes are projected using the implicit geometry definition. Our algorithm generalizes to any dimension and it typically produces meshes of very high quality. We show a simplified version of the method in just one page of MATLAB code, and we describe how to improve and extend our implementation. Prior to generating the mesh we compute a mesh size function to specify the desired size of the elements. We have developed algorithms for automatic generation of size functions, adapted to the curvature and the feature size of the geometry. We propose a new method for limiting the gradients in the size function by solving a non-linear partial differential equation. We show that the solution to our gradient limiting equation is optimal for convex geometries, and we discuss efficient methods to solve it numerically. The iterative nature of the algorithm makes it particularly useful for moving meshes, and we show how to combine it with the level set method for applications in fluid dynamics, shape optimization, and structural deformations. It is also appropriate for numerical adaptation; where the previous mesh is used to represent the size function and as the initial mesh for the refinements. Finally, we show how to generate meshes for regions in images by using implicit representations. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

[1]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[2]  J. Sethian,et al.  Structural Boundary Design via Level Set and Immersed Interface Methods , 2000 .

[3]  T. Sederberg Implicit and parametric curves and surfaces for computer aided geometric design , 1983 .

[4]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[5]  A. M. Winslow Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .

[6]  Bharat K. Soni,et al.  Mesh Generation , 2020, Handbook of Computational Geometry.

[7]  Paul S. Heckbert,et al.  Using particles to sample and control implicit surfaces , 1994, SIGGRAPH.

[8]  Ted D. Blacker,et al.  Paving: A new approach to automated quadrilateral mesh generation , 1991 .

[9]  Paul S. Heckbert,et al.  A Pliant Method for Anisotropic Mesh Generation , 1996 .

[10]  O. Pironneau Optimal Shape Design for Elliptic Systems , 1983 .

[11]  S. Osher,et al.  Level Set Methods for Optimization Problems Involving Geometry and Constraints I. Frequencies of a T , 2001 .

[12]  J. Sethian,et al.  Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains , 1998 .

[13]  J. W. Eastwood,et al.  Springer series in computational physics Editors: H. Cabannes, M. Holt, H.B. Keller, J. Killeen and S.A. Orszag , 1984 .

[14]  H. Blum Biological shape and visual science (part I) , 1973 .

[15]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[16]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[17]  M. Filipiak Mesh Generation , 2007 .

[18]  Pascal J. Frey,et al.  Fast Adaptive Quadtree Mesh Generation , 1998, IMR.

[19]  Mathieu Desbrun,et al.  Adaptive Sampling of Implicit Surfaces for Interactive Modelling and Animation , 1995, Comput. Graph. Forum.

[20]  Patrick M. Knupp,et al.  The Mesquite Mesh Quality Improvement Toolkit , 2003, IMR.

[21]  Bijan Mohammadi,et al.  Fluid dynamics computation with NSC2KE : an user-guide : release 1.0 , 1994 .

[22]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[23]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[24]  Luiz Velho,et al.  Physically-based methods for polygonization of implicit surfaces , 1992 .

[25]  Frédéric Hecht,et al.  MESH GRADATION CONTROL , 1998 .

[26]  Paul S. Heckbert,et al.  Using particles to sample and control implicit surfaces , 1994, SIGGRAPH 1994.

[27]  P. Persson,et al.  The Stress Driven Rearrangement Instabilities in Electronic Materials and in Helium Crystals , 2004 .

[28]  L. Paul Chew Constrained delaunay triangulations , 1989 .

[29]  Dave Hale Atomic Images - A Method For Meshing Digital Images , 2001, IMR.

[30]  D. Meiron,et al.  Efficient algorithms for solving static hamilton-jacobi equations , 2003 .

[31]  Rainald Löhner,et al.  From Medical Images to CFD Meshes , 1999, IMR.

[32]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[33]  Jules Bloomenthal,et al.  Polygonization of implicit surfaces , 1988, Comput. Aided Geom. Des..

[34]  Jacques Simon,et al.  Etude de Problème d'Optimal Design , 1975, Optimization Techniques.

[35]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation (Cambridge Monographs on Applied and Computational Mathematics) , 2006 .

[36]  D. Lee,et al.  Skeletonization via Distance Maps and Level Sets , 1995 .

[37]  Grinfeld Two-dimensional islanding atop stressed solid helium and epitaxial films. , 1994, Physical review. B, Condensed matter.

[38]  Jim Ruppert,et al.  A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation , 1995, J. Algorithms.

[39]  M. Rivara Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .

[40]  Oliver Gloth,et al.  Level Sets as Input for Hybrid Mesh Generation , 2000, IMR.

[41]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[42]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[43]  Guntram Berti,et al.  IMAGE-BASED UNSTRUCTURED 3D MESH GENERATION FOR MEDICAL APPLICATIONS , 2004 .

[44]  Kaleem Siddiqi,et al.  The Hamilton-Jacobi skeleton , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[45]  Jin Zhu,et al.  Background Overlay Grid Size Functions , 2002, IMR.

[46]  Richard Szeliski,et al.  Surface modeling with oriented particle systems , 1992, SIGGRAPH.

[47]  Carl Ollivier-Gooch,et al.  Tetrahedral mesh improvement using swapping and smoothing , 1997 .

[48]  G. Rodrigue,et al.  A generalized front marching algorithm for the solution of the eikonal equation , 2003 .

[49]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[50]  Kenji Shimada,et al.  Bubble mesh: automated triangular meshing of non-manifold geometry by sphere packing , 1995, SMA '95.

[51]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[52]  S. Teng,et al.  On the Radius-Edge Condition in the Control Volume Method , 1999 .

[53]  Ronald Fedkiw,et al.  A Crystalline, Red Green Strategy for Meshing Highly Deformable Objects with Tetrahedra , 2003, IMR.

[54]  Herbert Edelsbrunner,et al.  Sliver exudation , 1999, SCG '99.

[55]  Martin Rumpf,et al.  A Continuous Skeletonization Method Based on Level Sets , 2002, VisSym.

[56]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[57]  Jin Zhu A New Type of Size Function Respecting Premeshed Entities , 2003, IMR.

[58]  G. Allaire,et al.  A level-set method for shape optimization , 2002 .

[59]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[60]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[61]  Geoff Wyvill,et al.  Data structure forsoft objects , 1986, The Visual Computer.

[62]  Mark Yerry,et al.  A Modified Quadtree Approach To Finite Element Mesh Generation , 1983, IEEE Computer Graphics and Applications.

[63]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[64]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[65]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[66]  Kenji Shimada,et al.  Finite Element Mesh Sizing for Surfaces Using Skeleton , 2004, IMR.

[67]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[68]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[69]  D. A. Field Qualitative measures for initial meshes , 2000 .

[70]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Steven J. Owen,et al.  Surface mesh sizing control , 2000 .

[72]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[73]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[74]  Antonio Huerta,et al.  Chapter 14 Arbitrary Lagrangian-Eulerian Methods , 2004 .

[75]  David Eppstein,et al.  The Crust and the beta-Skeleton: Combinatorial Curve Reconstruction , 1998, Graph. Model. Image Process..