Constraint satisfaction techniques in planning and scheduling

Over the last few years constraint satisfaction, planning, and scheduling have received increased attention, and substantial effort has been invested in exploiting constraint satisfaction techniques when solving real life planning and scheduling problems. Constraint satisfaction is the process of finding a solution to a set of constraints. Planning is the process of finding a sequence of actions that transfer the world from some initial state to a desired state. Scheduling is the problem of assigning a set of tasks to a set of resources subject to a set of constraints. In this paper, we introduce the main definitions and techniques of constraint satisfaction, planning and scheduling from the Artificial Intelligence point of view.

[1]  Krzysztof R. Apt,et al.  Principles of constraint programming , 2003 .

[2]  Petr Vil ´ im,et al.  O(nlog n) Filtering Algorithms for Unary Resource Constraint , 2004 .

[3]  Fahiem Bacchus,et al.  Generalizing GraphPlan by Formulating Planning as a CSP , 2003, IJCAI.

[4]  John N. Hooker,et al.  Planning and Scheduling to Minimize Tardiness , 2005, CP.

[5]  Paolo Traverso,et al.  Automated planning - theory and practice , 2004 .

[6]  Abdullah Khalid,et al.  A Gentle Introduction to Quantum Computing , 2012 .

[7]  Ignacio E. Grossmann,et al.  Using MILP and CP for the Scheduling of Batch Chemical Processes , 2004, CPAIOR.

[8]  Hector Geffner,et al.  Branching and pruning: An optimal temporal POCL planner based on constraint programming , 2004, Artif. Intell..

[9]  Toby Walsh,et al.  Handbook of Constraint Programming , 2006, Handbook of Constraint Programming.

[10]  Rina Dechter,et al.  Constraint Processing , 1995, Lecture Notes in Computer Science.

[11]  Ivan Serina,et al.  An Approach to Temporal Planning and Scheduling in Domains with Predictable Exogenous Events , 2011, J. Artif. Intell. Res..

[12]  Zsófia Ruttkay,et al.  Constraint satisfaction---a survey , 1998 .

[13]  Peter van Beek,et al.  CPlan: A Constraint Programming Approach to Planning , 1999, AAAI/IAAI.

[14]  Ailsa H. Land,et al.  An Automatic Method of Solving Discrete Programming Problems , 1960 .

[15]  Jeremy Frank,et al.  Planning solar array operations on the international space station , 2011, TIST.

[16]  Maria Fox,et al.  CRIKEY - a temporal planner looking at the integration of scheduling and planning , 2004 .

[17]  John N. Hooker,et al.  A Hybrid Method for Planning and Scheduling , 2004, CP.

[18]  John N. Hooker,et al.  Inference Duality as a Basis for Sensitivity Analysis , 1999, Constraints.

[19]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[20]  Kenneth N. Brown,et al.  Solving a Stochastic Queueing Design and Control Problem with Constraint Programming , 2007, AAAI.

[21]  Olivier Lhomme,et al.  Consistency Techniques for Numeric CSPs , 1993, IJCAI.

[22]  Ivan Serina,et al.  Fast Plan Adaptation through Planning Graphs: Local and Systematic Search Techniques , 2000, AIPS.

[23]  A. Beacham Hiding Our Colors , 1995 .

[24]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[25]  Pierre Lopez,et al.  On Not-First/Not-Last conditions in disjunctive scheduling , 2000, Eur. J. Oper. Res..

[26]  J. Gaschnig Performance measurement and analysis of certain search algorithms. , 1979 .

[27]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[28]  Edward Tsang,et al.  Constraint Based Scheduling: Applying Constraint Programming to Scheduling Problems , 2003, J. Sched..

[29]  Miguel A. Salido,et al.  Scheduling in a Planning Environment , 2000, PuK.

[30]  Jeremy Frank,et al.  Constraint-Based Attribute and Interval Planning , 2003, Constraints.

[31]  Roman Barták,et al.  Reformulating Constraint Models for Classical Planning , 2008, FLAIRS Conference.

[32]  Philippe Baptiste,et al.  Constraint-Based Scheduling and Planning , 2006, Handbook of Constraint Programming.

[33]  John N. Hooker,et al.  An Integrated Method for Planning and Scheduling to Minimize Tardiness , 2006, Constraints.

[34]  Roman Barták Towards Mixed Planning and Scheduling , 2000 .

[35]  Robert M. Haralick,et al.  Increasing Tree Search Efficiency for Constraint Satisfaction Problems , 1979, Artif. Intell..

[36]  Hadrien Cambazard,et al.  Decomposition and Learning for a Hard Real Time Task Allocation Problem , 2004, CP.

[37]  Nicola Muscettola,et al.  HSTS: Integrating Planning and Scheduling , 1993 .

[38]  J. Christopher Beck,et al.  Solving a Location-Allocation Problem with Logic-Based Benders' Decomposition , 2009, CP.

[39]  André Langevin,et al.  Dispatching and Conflict-Free Routing of Automated Guided Vehicles: A Hybrid Approach Combining Constraint Programming and Mixed Integer Programming , 2004, CPAIOR.

[40]  Petr Vilím,et al.  O(n log n) Filtering Algorithms for Unary Resource Constraint , 2004, CPAIOR.

[41]  Stephen F. Smith,et al.  Slack-Based Heuristics for Constraint Satisfaction Scheduling , 1993, AAAI.

[42]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[43]  Christian Timpe,et al.  Solving planning and scheduling problems with combined integer and constraint programming , 2002, OR Spectr..

[44]  S. Edelkamp,et al.  Large-Scale Optimal PDDL 3 Planning with MIPS-XXL , 2006 .

[45]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[46]  Christodoulos A. Floudas Generalized Benders Decomposition , 2009, Encyclopedia of Optimization.

[47]  Ioannis Vlahavas,et al.  Intelligent techniques for planning , 2004 .

[48]  Roman Barták,et al.  Extension of O(n log n) Filtering Algorithms for the Unary Resource Constraint to Optional Activities , 2005, Constraints.

[49]  Christoph Lenzen,et al.  A generalized timeline representation, services, and interface for automating space mission operations , 2012, SpaceOps 2012 Conference.

[50]  J. Hooker,et al.  Logic-based Benders decomposition , 2003 .

[51]  Philippe Laborie,et al.  Algorithms for propagating resource constraints in AI planning and scheduling: Existing approaches and new results , 2003, Artif. Intell..

[52]  Alex M. Andrew,et al.  Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems , 2002 .

[53]  Luca Benini,et al.  Allocation and Scheduling for MPSoCs via decomposition and no-good generation , 2005, IJCAI.

[54]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[55]  Erlendur S. Thorsteinsson Branch-and-Check: A Hybrid Framework Integrating Mixed Integer Programming and Constraint Logic Programming , 2001, CP.

[56]  John Gaschnig,et al.  A General Backtrack Algorithm That Eliminates Most Redundant Tests , 1977, IJCAI.

[57]  Roman Barták,et al.  Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems , 2010 .

[58]  Stephen F. Smith,et al.  Configurable, Mixed-Initiative Systems for Planning and Scheduling , 1996 .

[59]  Colin P. Williams,et al.  A Near-Term Quantum Computing Approach for Hard Computational Problems in Space Exploration , 2012, 1204.2821.

[60]  John N. Hooker,et al.  Planning and Scheduling by Logic-Based Benders Decomposition , 2007, Oper. Res..

[61]  Vipul Jain,et al.  Algorithms for Hybrid MILP/CP Models for a Class of Optimization Problems , 2001, INFORMS J. Comput..

[62]  Tallys H. Yunes,et al.  An Integrated Solver for Optimization Problems , 2010, Oper. Res..

[63]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[64]  John N. Hooker,et al.  A Hybrid Method for the Planning and Scheduling , 2005, Constraints.

[65]  John N. Hooker Integrated Methods for Optimization, 2nd ed , 2012 .

[66]  P. Pandurang Nayak,et al.  Remote Agent: To Boldly Go Where No AI System Has Gone Before , 1998, Artif. Intell..

[67]  Patrick Prosser,et al.  HYBRID ALGORITHMS FOR THE CONSTRAINT SATISFACTION PROBLEM , 1993, Comput. Intell..

[68]  I. Grossmann,et al.  A decomposition approach for the scheduling of a steel plant production , 2001 .

[69]  Bart Selman,et al.  Unifying SAT-based and Graph-based Planning , 1999, IJCAI.

[70]  O. Dubois,et al.  On the non-3-colourability of random graphs , 2002 .

[71]  Philippe Baptiste,et al.  Constraint-based scheduling , 2001 .

[72]  Mathijs de Weerdt,et al.  P3C: A New Algorithm for the Simple Temporal Problem , 2008, ICAPS.

[73]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[74]  Cristopher Moore,et al.  Almost all graphs with average degree 4 are 3-colorable , 2002, STOC '02.

[75]  Wheeler Ruml,et al.  On-line Planning and Scheduling for High-speed Manufacturing , 2005, ICAPS.

[76]  Paolo Traverso,et al.  Automated Planning: Theory & Practice , 2004 .

[77]  P. Baptiste,et al.  Edge-Finding Constraint Propagation Algorithms for Disjunctive and Cumulative Scheduling , 1996 .

[78]  Raymond Reiter,et al.  Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems , 2001 .

[79]  Pascal Van Hentenryck,et al.  Principles and practice of constraint programming: The Newport papers , 1996, Computers & Mathematics with Applications.

[80]  Ignacio E. Grossmann,et al.  Decomposition techniques for multistage scheduling problems using mixed-integer and constraint programming methods , 2002 .

[81]  Subbarao Kambhampati,et al.  Planning as constraint satisfaction: Solving the planning graph by compiling it into CSP , 2001, Artif. Intell..

[82]  Edward M. Reingold,et al.  Backtrack programming techniques , 1975, CACM.

[83]  Subbarao Kambhampati,et al.  Efficient Planning Through Separate Resource Scheduling , 1999 .

[84]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[85]  J. Hooker,et al.  Logic-Based Methods for Optimization: Combining Optimization and Constraint Satisfaction , 2000 .

[86]  Rina Dechter,et al.  Dead-End Driven Learning , 1994, AAAI.

[87]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[88]  Philippe Baptiste,et al.  Constraint-Based Optimization and Approximation for Job-Shop Scheduling , 1995 .

[89]  J. Hooker,et al.  A Heuristic Logic-Based Benders Method for the Home Health Care Problem , 2012 .

[90]  Mats Carlsson,et al.  An Open-Ended Finite Domain Constraint Solver , 1997, PLILP.

[91]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[92]  Roman Barták,et al.  Constraint Satisfaction for Planning and Scheduling , 2005 .

[93]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[94]  Frederic Py,et al.  Adaptive Control for Autonomous Underwater Vehicles , 2008, AAAI.

[95]  John N. Hooker,et al.  Integrated methods for optimization , 2011, International series in operations research and management science.

[96]  Subbarao Kambhampati,et al.  Scaling up Planning by Teasing out Resource Scheduling , 1999, ECP.

[97]  Joseph Y.-T. Leung,et al.  Handbook of Scheduling: Algorithms, Models, and Performance Analysis , 2004 .