Remote toehold: a mechanism for flexible control of DNA hybridization kinetics.

Hybridization of DNA strands can be used to build molecular devices, and control of the kinetics of DNA hybridization is a crucial element in the design and construction of functional and autonomous devices. Toehold-mediated strand displacement has proved to be a powerful mechanism that allows programmable control of DNA hybridization. So far, attempts to control hybridization kinetics have mainly focused on the length and binding strength of toehold sequences. Here we show that insertion of a spacer between the toehold and displacement domains provides additional control: modulation of the nature and length of the spacer can be used to control strand-displacement rates over at least 3 orders of magnitude. We apply this mechanism to operate displacement reactions in potentially useful kinetic regimes: the kinetic proofreading and concentration-robust regimes.

[1]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[2]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[3]  Erik Winfree,et al.  Catalyzed relaxation of a metastable DNA fuel. , 2006, Journal of the American Chemical Society.

[4]  A. I︠u︡ Grosberg,et al.  Theoretical and mathematical models in polymer research : modern methods in polymer research and technology , 1998 .

[5]  Jie Chao,et al.  Dynamic Patterning Programmed by DNA Tiles Captured on a DNA Origami Substrate , 2009, Nature nanotechnology.

[6]  Harry M. T. Choi,et al.  Programming biomolecular self-assembly pathways , 2008, Nature.

[7]  M Reza Ghadiri,et al.  Universal translators for nucleic acid diagnosis. , 2009, Journal of the American Chemical Society.

[8]  N. Seeman,et al.  A precisely controlled DNA biped walking device , 2004 .

[9]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[10]  L. Stols,et al.  Sensitive fluorescence-based thermodynamic and kinetic measurements of DNA hybridization in solution. , 1993, Biochemistry.

[11]  N. Pierce,et al.  A synthetic DNA walker for molecular transport. , 2004, Journal of the American Chemical Society.

[12]  A. Turberfield,et al.  Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. , 2008, Physical review letters.

[13]  Yaakov Benenson,et al.  Biocomputers: from test tubes to live cells. , 2009, Molecular bioSystems.

[14]  A. Vologodskii,et al.  The kinetics of oligonucleotide replacements. , 2000, Journal of molecular biology.

[15]  Yasubumi Sakakibara,et al.  Proceedings of the 16th international conference on DNA computing and molecular programming , 2010 .

[16]  Niles A. Pierce,et al.  An algorithm for computing nucleic acid base‐pairing probabilities including pseudoknots , 2004, J. Comput. Chem..

[17]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[18]  Conrad Steenberg,et al.  NUPACK: Analysis and design of nucleic acid systems , 2011, J. Comput. Chem..

[19]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[20]  I. Willner,et al.  Logic gates and antisense DNA devices operating on a translator nucleic Acid scaffold. , 2009, ACS nano.

[21]  Brian M. Frezza,et al.  Modular multi-level circuits from immobilized DNA-based logic gates. , 2007, Journal of the American Chemical Society.

[22]  Ruojie Sha,et al.  A Bipedal DNA Brownian Motor with Coordinated Legs , 2009, Science.

[23]  Bernard Yurke,et al.  Using DNA to Power Nanostructures , 2003, Genetic Programming and Evolvable Machines.

[24]  Lauren K. Wolf,et al.  Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison , 2006, Nucleic acids research.

[25]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[26]  Harry M. T. Choi,et al.  Topological constraints in nucleic acid hybridization kinetics , 2005, Nucleic acids research.

[27]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[28]  O. Gang,et al.  Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. , 2010, Nature nanotechnology.

[29]  L. Stryer,et al.  Energy transfer: a spectroscopic ruler. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[30]  R. Levine,et al.  DNA computing circuits using libraries of DNAzyme subunits. , 2010, Nature nanotechnology.

[31]  Luca Cardelli,et al.  A programming language for composable DNA circuits , 2009, Journal of The Royal Society Interface.

[32]  T. Ha,et al.  Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. , 2004, Biophysical journal.

[33]  J. Doye,et al.  DNA nanotweezers studied with a coarse-grained model of DNA. , 2009, Physical review letters.

[34]  Erik Winfree,et al.  Dynamic allosteric control of noncovalent DNA catalysis reactions. , 2008, Journal of the American Chemical Society.

[35]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[36]  Niles A. Pierce,et al.  A partition function algorithm for nucleic acid secondary structure including pseudoknots , 2003, J. Comput. Chem..

[37]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[38]  Erik Winfree,et al.  Thermodynamic Analysis of Interacting Nucleic Acid Strands , 2007, SIAM Rev..

[39]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[40]  Ehud Shapiro,et al.  Molecular implementation of simple logic programs. , 2009, Nature nanotechnology.

[41]  Friedrich C Simmel,et al.  A DNA-based machine that can cyclically bind and release thrombin. , 2004, Angewandte Chemie.

[42]  D. Y. Zhang,et al.  Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA , 2007, Science.

[43]  Russell P. Goodman,et al.  Reconfigurable, braced, three-dimensional DNA nanostructures. , 2008, Nature nanotechnology.

[44]  G. Seelig,et al.  DNA as a universal substrate for chemical kinetics , 2010, Proceedings of the National Academy of Sciences.