Fermentative Butanol Production

Clostridium acetobutylicum is an anaerobic, spore‐forming bacterium with the ability to ferment starch and sugars into solvents. In the past, it has been used for industrial production of acetone and butanol, until cheap crude oil rendered petrochemical synthesis more economically feasible. Both economic (price of crude oil) and environmental aspects (carbon dioxide emissions) have caused the pendulum to swing back again. Molecular biology has allowed a detailed understanding of genes and enzymes, required for solventogenesis. Thus, construction of strains with improved fermentation ability is now possible. Advances in continuous culture technology and improved downstream processing also add to economic advantages of a new biotechnological process. Two major companies have already committed themselves to biobutanol production as a biofuel additive. Thus, butanol fermentation is on the rise again.

[1]  A. Fitz Ueber die Gährung des Glycerins , 1876 .

[2]  Ueber Schizomyceten-Gährungen II [Glycerin, Mannit, Stärke, Dextrin.] , 1877 .

[3]  Alb. Fitz Ueber Schizomyceten-Gährungen III , 1878 .

[4]  E. B. Fred,et al.  A Cultural Study of the Acetone Butyl Alcohol OrganismOne Plate , 1926 .

[5]  C. L. Gabriel Butanol Fermentation Process1 , 1928 .

[6]  J. G. Morris,et al.  Production of Solvents by Clostridium acetobutylicum Cultures Maintained at Neutral pH , 1984, Applied and environmental microbiology.

[7]  C. Forsberg,et al.  Xylanolytic Activity of Clostridium acetobutylicum , 1985, Applied and environmental microbiology.

[8]  L. Huang,et al.  Transmembrane pH gradient and membrane potential in Clostridium acetobutylicum during growth under acetogenic and solventogenic conditions , 1985, Applied and environmental microbiology.

[9]  R. Datta,et al.  Fermentation of xylan by Clostridium acetobutylicum , 1986 .

[10]  D. T. Jones,et al.  Acetone-butanol fermentation revisited. , 1986, Microbiological reviews.

[11]  R. Mutharasan,et al.  Altered Electron Flow in Continuous Cultures of Clostridium acetobutylicum Induced by Viologen Dyes , 1987, Applied and environmental microbiology.

[12]  C. Forsberg,et al.  Purification and Characterization of Two Endoxylanases from Clostridium acetobutylicum ATCC 824 , 1987, Applied and environmental microbiology.

[13]  E. Papoutsakis,et al.  Purification and characterization of the NADH-dependent butanol dehydrogenase from Clostridium acetobutylicum (ATCC 824). , 1989, Archives of biochemistry and biophysics.

[14]  E. Papoutsakis,et al.  Cloning and expression of Clostridium acetobutylicum ATCC 824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase in Escherichia coli , 1990, Applied and environmental microbiology.

[15]  G. Bennett,et al.  Purification of acetoacetate decarboxylase from Clostridium acetobutylicum ATCC 824 and cloning of the acetoacetate decarboxylase gene in Escherichia coli , 1990, Applied and environmental microbiology.

[16]  P. Dürre,et al.  Cloning, sequencing, and molecular analysis of the acetoacetate decarboxylase gene region from Clostridium acetobutylicum , 1990, Journal of bacteriology.

[17]  W. Zillig,et al.  NOTES: Hyperthermus butylicus gen. nov., sp. nov., a Hyperthermophilic, Anaerobic, Peptide-Fermenting, Facultatively H2S-Generating Archaebacterium , 1991 .

[18]  G. Goma,et al.  Purification and characterization of the extracellular alpha-amylase from Clostridium acetobutylicum ATCC 824 , 1991, Applied and environmental microbiology.

[19]  G. Bennett,et al.  Molecular cloning of an alcohol (butanol) dehydrogenase gene cluster from Clostridium acetobutylicum ATCC 824 , 1991, Journal of bacteriology.

[20]  Rathin Datta,et al.  Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum , 1991 .

[21]  G. Gottschalk,et al.  Physiological Events in Clostridium acetobutylicum during the Shift from Acidogenesis to Solventogenesis in Continuous Culture and Presentation of a Model for Shift Induction , 1992, Applied and environmental microbiology.

[22]  P. Dürre,et al.  mRNA analysis of the adc gene region of Clostridium acetobutylicum during the shift to solventogenesis , 1992, Journal of bacteriology.

[23]  E. Papoutsakis,et al.  Molecular characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes , 1992, Journal of bacteriology.

[24]  P. Dürre,et al.  Cloning, sequencing, and molecular analysis of the sol operon of Clostridium acetobutylicum, a chromosomal locus involved in solventogenesis , 1993, Journal of bacteriology.

[25]  E. Papoutsakis,et al.  Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824 , 1994, Journal of bacteriology.

[26]  G. Bennett,et al.  Intracellular Concentrations of Coenzyme A and Its Derivatives from Clostridium acetobutylicum ATCC 824 and Their Roles in Enzyme Regulation , 1994, Applied and environmental microbiology.

[27]  Philippe Soucaille,et al.  Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824 , 1995 .

[28]  U. Sauer,et al.  Solventogenic enzymes of Clostridium acetobutylicum: catalytic properties, genetic organization, and transcriptional regulation. , 1995, FEMS microbiology reviews.

[29]  Differential induction of genes related to solvent formation during the shift from acidogenesis to solventogenesis in continuous culture of Clostridium acetobutylicum , 1995 .

[30]  Jiann-Shin Chen,et al.  Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing clostridia. , 1995, FEMS microbiology reviews.

[31]  P. Soucaille,et al.  Solvent-forming genes in clostridia , 1996, Nature.

[32]  Microbial production of acetone and butanol : Can history be repeated ? , 1996 .

[33]  E. Papoutsakis,et al.  The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain , 1997, Journal of bacteriology.

[34]  P. Dürre,et al.  New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation , 1998, Applied Microbiology and Biotechnology.

[35]  George N. Bennett,et al.  Regulation of the sol Locus Genes for Butanol and Acetone Formation in Clostridium acetobutylicumATCC 824 by a Putative Transcriptional Repressor , 1999, Journal of bacteriology.

[36]  H. Blaschek,et al.  Effect of Acetate on Molecular and Physiological Aspects of Clostridium beijerinckii NCIMB 8052 Solvent Production and Strain Degeneration , 1999, Applied and Environmental Microbiology.

[37]  K. Schuster Applied acetone-butanol fermentation. , 2000, Journal of molecular microbiology and biotechnology.

[38]  P. Youngman,et al.  Spo0A directly controls the switch from acid to solvent production in solvent‐forming clostridia , 2000, Molecular microbiology.

[39]  D. T. Jones,et al.  Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. , 2001, International journal of systematic and evolutionary microbiology.

[40]  W. Schwarz The cellulosome and cellulose degradation by anaerobic bacteria , 2001, Applied Microbiology and Biotechnology.

[41]  P. Dürre,et al.  Orf5/SolR: a transcriptional repressor of the sol operon of Clostridium acetobutylicum? , 2001, Journal of Industrial Microbiology and Biotechnology.

[42]  George N. Bennett,et al.  Genome Sequence and Comparative Analysis of the Solvent-Producing Bacterium Clostridium acetobutylicum , 2001, Journal of bacteriology.

[43]  L. Blank,et al.  Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene , 2001, Journal of Industrial Microbiology and Biotechnology.

[44]  P. Dürre,et al.  Changes in protein synthesis and identification of proteins specifically induced during solventogenesis in Clostridium acetobutylicum , 2002, Electrophoresis.

[45]  Eleftherios T. Papoutsakis,et al.  Northern, Morphological, and Fermentation Analysis of spo0A Inactivation and Overexpression in Clostridium acetobutylicum ATCC 824 , 2002, Journal of bacteriology.

[46]  P. Soucaille,et al.  Molecular Characterization and Transcriptional Analysis of adhE2, the Gene Encoding the NADH-Dependent Aldehyde/Alcohol Dehydrogenase Responsible for Butanol Production in Alcohologenic Cultures of Clostridium acetobutylicum ATCC 824 , 2002, Journal of bacteriology.

[47]  Philippe Soucaille,et al.  Characterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum. , 2002, FEMS microbiology letters.

[48]  P. Dürre,et al.  Control of Butanol Formation in Clostridium acetobutylicum by Transcriptional Activation , 2002, Journal of bacteriology.

[49]  C. Tomas,et al.  Overexpression of groESL in Clostridium acetobutylicum Results in Increased Solvent Production and Tolerance, Prolonged Metabolism, and Changes in the Cell's Transcriptional Program , 2003, Applied and Environmental Microbiology.

[50]  L. Hindorff,et al.  Expression of a Cloned Cyclopropane Fatty Acid Synthase Gene Reduces Solvent Formation in Clostridium acetobutylicum ATCC 824 , 2003, Applied and Environmental Microbiology.

[51]  P. Soucaille,et al.  Characterization of the CipA Scaffolding Protein and In Vivo Production of a Minicellulosome in Clostridium acetobutylicum , 2003, Journal of bacteriology.

[52]  Eleftherios T. Papoutsakis,et al.  DNA Array-Based Transcriptional Analysis of Asporogenous, Nonsolventogenic Clostridium acetobutylicum Strains SKO1 and M5 , 2003, Journal of bacteriology.

[53]  W. D. de Vos,et al.  Production by Clostridium acetobutylicum ATCC 824 of CelG, a Cellulosomal Glycoside Hydrolase Belonging to Family 9 , 2003, Applied and Environmental Microbiology.

[54]  P. Dürre,et al.  Characterization and Development of Two Reporter Gene Systems for Clostridium acetobutylicum , 2004, Applied and Environmental Microbiology.

[55]  G. Gottschalk,et al.  The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation , 1985, Archives of Microbiology.

[56]  Nasib Qureshi,et al.  Butanol fermentation research: upstream and downstream manipulations. , 2004, Chemical record.

[57]  C. Tomas,et al.  Transcriptional Analysis of Butanol Stress and Tolerance in Clostridium acetobutylicum , 2004, Journal of bacteriology.

[58]  E. Papoutsakis,et al.  Transcriptional Analysis of spo0A Overexpression in Clostridium acetobutylicum and Its Effect on the Cell's Response to Butanol Stress , 2004, Journal of bacteriology.

[59]  H. Fierobe,et al.  Production of Heterologous and Chimeric Scaffoldins by Clostridium acetobutylicum ATCC 824 , 2004, Journal of bacteriology.

[60]  P. Dürre,et al.  DNA topology and gene expression in Clostridium acetobutylicum: Implications for the regulation of solventogenesis , 1996, Biotechnology Letters.

[61]  G. Bennett,et al.  Proteome analysis and comparison of Clostridium acetobutylicum ATCC 824 and Spo0A strain variants , 2006, Journal of Industrial Microbiology and Biotechnology.

[62]  Eleftherios T. Papoutsakis,et al.  A comparative genomic view of clostridial sporulation and physiology , 2005, Nature Reviews Microbiology.

[63]  Nasib Qureshi,et al.  Improving performance of a gas stripping-based recovery system to remove butanol from Clostridium beijerinckii fermentation , 2005, Bioprocess and biosystems engineering.

[64]  George N. Bennett,et al.  Intracellular Butyryl Phosphate and Acetyl Phosphate Concentrations in Clostridium acetobutylicum and Their Implications for Solvent Formation , 2005, Applied and Environmental Microbiology.

[65]  Eleftherios T. Papoutsakis,et al.  Transcriptional Program of Early Sporulation and Stationary-Phase Events in Clostridium acetobutylicum , 2005, Journal of bacteriology.

[66]  T. Ezeji,et al.  Continuous butanol fermentation and feed starch retrogradation: butanol fermentation sustainability using Clostridium beijerinckii BA101. , 2005, Journal of biotechnology.

[67]  N. Qureshi,et al.  Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption , 2005, Bioprocess and biosystems engineering.

[68]  G. Rao,et al.  Alcohol production by Clostridium acetobutylicum induced by methyl viologen , 1986, Biotechnology Letters.

[69]  G. Gottschalk,et al.  Butanol formation byClostridium thermosaccharolyticum at neutral pH , 1989, Biotechnology Letters.

[70]  P. Dürre Formation of Solvents in Clostridia , 2005 .

[71]  H. Blaschek,et al.  Isolation and characterization of α-amylase derived from starchgrownClostridium acetobutylicum ATCC 824 , 2005, Journal of Industrial Microbiology.

[72]  Nasib Qureshi,et al.  Butanol Production from Corn Fiber Xylan Using Clostridium acetobutylicum , 2006, Biotechnology progress.

[73]  V. Zverlov,et al.  Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery , 2006, Applied Microbiology and Biotechnology.

[74]  Regulation der Lösungsmittelbildung in Clostridium acetobutylicum durch DNA-bindende Proteine , 2006 .

[75]  Jui-shen Chiao,et al.  History of the Acetone-Butanol-Ethanol Fermentation Industry in China: Development of Continuous Production Technology , 2007, Journal of Molecular Microbiology and Biotechnology.

[76]  W. Mitchell,et al.  Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824 , 2007, Applied Microbiology and Biotechnology.

[77]  Kensuke Furukawa,et al.  Characterization of the sol Operon in Butanol-Hyperproducing Clostridium saccharoperbutylacetonicum Strain N1-4 and Its Degeneration Mechanism , 2007, Bioscience, biotechnology, and biochemistry.

[78]  J. Heap,et al.  The ClosTron: a universal gene knock-out system for the genus Clostridium. , 2007, Journal of microbiological methods.

[79]  E. Papoutsakis,et al.  Dynamics of Genomic-Library Enrichment and Identification of Solvent Tolerance Genes for Clostridium acetobutylicum , 2007, Applied and Environmental Microbiology.

[80]  H. Bahl,et al.  Microbial Production of Acetone/Butanol/Isopropanol , 2001 .