Axon diameter index estimation independent of fiber orientation distribution using high-gradient diffusion MRI

Axon diameter mapping using high-gradient diffusion MRI has generated great interest as a noninvasive tool for studying trends in axonal size in the human brain. One of the main barriers to mapping axon diameter across the whole brain is accounting for complex white matter fiber configurations (e.g., crossings and fanning), which are prevalent. Here, we present a framework for generalizing axon diameter index estimation to the whole brain independent of the underlying fiber orientation distribution using the spherical mean technique (SMT). This approach is shown to significantly benefit from the use of real-valued diffusion data with Gaussian noise, which reduces the systematic bias in the estimated parameters resulting from the elevation of the noise floor when using magnitude data with Rician noise. We demonstrate the feasibility of obtaining whole-brain orientationally invariant estimates of axon diameter index and relative volume fractions in six healthy human volunteers using real-valued diffusion data acquired on a dedicated high-gradient 3-Tesla human MRI scanner with 300 mT/m maximum gradient strength. The trends in axon diameter index are consistent with known variations in axon diameter from histology and demonstrate the potential of this generalized framework for revealing coherent patterns in axonal structure throughout the living human brain. The use of real-valued diffusion data provides a viable solution for eliminating the Rician noise floor and should be considered for all spherical mean approaches to microstructural parameter estimation.

[1]  Derek K. Jones,et al.  Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging , 2013, Human brain mapping.

[2]  W. Baaré,et al.  An ex vivo imaging pipeline for producing high‐quality and high‐resolution diffusion‐weighted imaging datasets , 2011, Human brain mapping.

[3]  Carl-Fredrik Westin,et al.  Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: Applications in healthy volunteers and in brain tumors , 2015, NeuroImage.

[4]  J. Veraart,et al.  Degeneracy in model parameter estimation for multi‐compartmental diffusion in neuronal tissue , 2016, NMR in biomedicine.

[5]  Jean-Philippe Thiran,et al.  Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data , 2015, NeuroImage.

[6]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[7]  J Hua,et al.  Noise and artifact comparison for Fourier and polynomial phase correction used with Fourier reconstruction of asymmetric data sets , 1992, Journal of magnetic resonance imaging : JMRI.

[8]  Daniel C. Alexander,et al.  Multi-compartment microscopic diffusion imaging , 2016, NeuroImage.

[9]  Jennifer A McNab,et al.  Characterization of Axonal Disease in Patients with Multiple Sclerosis Using High-Gradient-Diffusion MR Imaging. , 2016, Radiology.

[10]  Nikos K. Logothetis,et al.  Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque , 2014, Biological Cybernetics.

[11]  Bruce R. Rosen,et al.  MGH–USC Human Connectome Project datasets with ultra-high b-value diffusion MRI , 2016, NeuroImage.

[12]  Lawrence L. Wald,et al.  High-gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain , 2019, Brain Structure and Function.

[13]  P. Szeszko,et al.  MRI atlas of human white matter , 2006 .

[14]  Rachid Deriche,et al.  Adaptive phase correction of diffusion-weighted images , 2020, NeuroImage.

[15]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[16]  S. Wakana,et al.  MRI Atlas of Human White Matter , 2005 .

[17]  R. Henkelman Measurement of signal intensities in the presence of noise in MR images. , 1985, Medical physics.

[18]  Markus Nilsson,et al.  Time‐dependent diffusion in undulating thin fibers: Impact on axon diameter estimation , 2019, NMR in biomedicine.

[19]  Daniel C Alexander,et al.  Undulating and crossing axons in the corpus callosum may explain the overestimation of axon diameters with ActiveAx , 2013 .

[20]  L. Wald,et al.  Corpus callosum axon diameter relates to cognitive impairment in multiple sclerosis , 2019, Annals of clinical and translational neurology.

[21]  Walter Schneider,et al.  Validation of diffusion MRI estimates of compartment size and volume fraction in a biomimetic brain phantom using a human MRI scanner with 300 mT/m maximum gradient strength , 2018, NeuroImage.

[22]  Thomas R. Knösche,et al.  White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI , 2013, NeuroImage.

[23]  Carl-Fredrik Westin,et al.  Q-space trajectory imaging for multidimensional diffusion MRI of the human brain , 2016, NeuroImage.

[24]  M. Koch,et al.  A tensor model and measures of microscopic anisotropy for double-wave-vector diffusion-weighting experiments with long mixing times. , 2010, Journal of magnetic resonance.

[25]  C. Westin,et al.  Searching for the neurite density with diffusion MRI: Challenges for biophysical modeling , 2018, Human brain mapping.

[26]  Jeffrey A. Fessler,et al.  Separate Magnitude and Phase Regularization via Compressed Sensing , 2012, IEEE Transactions on Medical Imaging.

[27]  Sébastien Ourselin,et al.  Global image registration using a symmetric block-matching approach , 2014, Journal of medical imaging.

[28]  Jack L. Koenig,et al.  An automatic phase correction method in nuclear magnetic resonance imaging , 1990 .

[29]  Carl-Fredrik Westin,et al.  Influence of the Size and Curvedness of Neural Projections on the Orientationally Averaged Diffusion MR Signal , 2018, Front. Phys..

[30]  Hui Zhang,et al.  Axon diameter mapping in the presence of orientation dispersion with diffusion MRI , 2011, NeuroImage.

[31]  Julien Cohen-Adad,et al.  The Human Connectome Project and beyond: Initial applications of 300mT/m gradients , 2013, NeuroImage.

[32]  Mark Jenkinson,et al.  Evaluating fibre orientation dispersion in white matter: Comparison of diffusion MRI, histology and polarized light imaging , 2017, NeuroImage.

[33]  A. Scheibel,et al.  Fiber composition of the human corpus callosum , 1992, Brain Research.

[34]  Julien Cohen-Adad,et al.  Pushing the limits of in vivo diffusion MRI for the Human Connectome Project , 2013, NeuroImage.

[35]  Bruce R. Rosen,et al.  Age-related alterations in axonal microstructure in the corpus callosum measured by high-gradient diffusion MRI , 2019, NeuroImage.

[36]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[37]  F. Ståhlberg,et al.  The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study , 2012, NMR in biomedicine.

[38]  Bruce Fischl,et al.  Improved tractography alignment using combined volumetric and surface registration , 2010, NeuroImage.

[39]  Richard Bowtell,et al.  Microstructural imaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong gradients for diffusion MRI , 2018, NeuroImage.

[40]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[41]  Edward S Hui,et al.  Double‐pulsed diffusional kurtosis imaging , 2014, NMR in biomedicine.

[42]  Tim B. Dyrby,et al.  Axon Diameter Mapping in Crossing Fibers with Diffusion MRI , 2011, MICCAI.

[43]  Kawin Setsompop,et al.  Motion‐robust sub‐millimeter isotropic diffusion imaging through motion corrected generalized slice dithered enhanced resolution (MC‐gSlider) acquisition , 2018, Magnetic resonance in medicine.

[44]  Stamatios N. Sotiropoulos,et al.  Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images , 2016, NeuroImage.

[45]  Daniel C. Alexander,et al.  Camino: Open-Source Diffusion-MRI Reconstruction and Processing , 2006 .

[46]  Paul T. Callaghan,et al.  Locally anisotropic motion in a macroscopically isotropic system: displacement correlations measured using double pulsed gradient spin‐echo NMR , 2002 .

[47]  Anders M. Dale,et al.  Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data , 2006, NeuroImage.

[48]  Stamatios N. Sotiropoulos,et al.  An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging , 2016, NeuroImage.

[49]  André J. W. van der Kouwe,et al.  Brain morphometry with multiecho MPRAGE , 2008, NeuroImage.

[50]  D. Noll,et al.  Homodyne detection in magnetic resonance imaging. , 1991, IEEE transactions on medical imaging.

[51]  Jelle Veraart,et al.  On the scaling behavior of water diffusion in human brain white matter , 2019, NeuroImage.

[52]  Daniel Topgaard Chapter 7:NMR Methods for Studying Microscopic Diffusion Anisotropy , 2016 .

[53]  Alejandro F. Frangi,et al.  Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding , 2018, Magnetic resonance in medicine.

[54]  D. Alexander A general framework for experiment design in diffusion MRI and its application in measuring direct tissue‐microstructure features , 2008, Magnetic resonance in medicine.

[55]  Dmitry S. Novikov,et al.  What dominates the time dependence of diffusion transverse to axons: Intra- or extra-axonal water? , 2017, NeuroImage.

[56]  G Larry Bretthorst Automatic phasing of MR images. Part II: voxel-wise phase estimation. , 2008, Journal of magnetic resonance.

[57]  Allen W. Song,et al.  A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE) , 2013, NeuroImage.

[58]  C. Sønderby,et al.  Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments , 2013, NMR in biomedicine.

[59]  H. Stanley,et al.  Geometric Navigation of Axons in a Cerebral Pathway: Comparing dMRI with Tract Tracing and Immunohistochemistry , 2018, Cerebral cortex.

[60]  F. Kruggel,et al.  Quantitative mapping of the per‐axon diffusion coefficients in brain white matter , 2015, Magnetic resonance in medicine.

[61]  J. Veraart,et al.  Along-axon diameter variation and axonal orientation dispersion revealed with 3D electron microscopy: implications for quantifying brain white matter microstructure with histology and diffusion MRI , 2019, Brain Structure and Function.

[62]  Daniel C. Alexander,et al.  Convergence and Parameter Choice for Monte-Carlo Simulations of Diffusion MRI , 2009, IEEE Transactions on Medical Imaging.

[63]  G. Larry Bretthorst Automatic phasing of MR images. Part II: voxel-wise phase estimation. , 2008 .

[64]  Zheng Chang,et al.  Nonlinear phase correction with an extended statistical algorithm , 2005, IEEE Trans. Medical Imaging.

[65]  Jennifer A McNab,et al.  Double diffusion encoding MRI for the clinic , 2018, Magnetic resonance in medicine.

[66]  S. Lasič,et al.  Isotropic diffusion weighting in PGSE NMR by magic-angle spinning of the q-vector. , 2013, Journal of magnetic resonance.

[67]  Derek K. Jones,et al.  Noninvasive quantification of axon radii using diffusion MRI , 2020, eLife.

[68]  Jelle Veraart,et al.  TE dependent Diffusion Imaging (TEdDI) distinguishes between compartmental T 2 relaxation times , 2017, NeuroImage.

[69]  L. Wald,et al.  A 64‐channel 3T array coil for accelerated brain MRI , 2013, Magnetic resonance in medicine.

[70]  Bruce R. Rosen,et al.  Investigating the Capability to Resolve Complex White Matter Structures with High b-Value Diffusion Magnetic Resonance Imaging on the MGH-USC Connectom Scanner , 2014, Brain Connect..

[71]  Derek K. Jones,et al.  “Squashing peanuts and smashing pumpkins”: How noise distorts diffusion‐weighted MR data , 2004, Magnetic resonance in medicine.

[72]  S. T. Nichols,et al.  Quantitative evaluation of several partial fourier reconstruction algorithms used in mri , 1993, Magnetic resonance in medicine.

[73]  P. Basser,et al.  Axcaliber: A method for measuring axon diameter distribution from diffusion MRI , 2008, Magnetic resonance in medicine.

[74]  Roland Bammer,et al.  Phase errors in Diffusion-Weighted Imaging , 2010 .

[75]  Tim B. Dyrby,et al.  Orientationally invariant indices of axon diameter and density from diffusion MRI , 2010, NeuroImage.

[76]  Bruce Fischl,et al.  Combined Volumetric and Surface Registration , 2009, IEEE Transactions on Medical Imaging.

[77]  Carl-Fredrik Westin,et al.  Resolution limit of cylinder diameter estimation by diffusion MRI: The impact of gradient waveform and orientation dispersion , 2017, NMR in biomedicine.

[78]  Peter J Basser,et al.  Microscopic anisotropy revealed by NMR double pulsed field gradient experiments with arbitrary timing parameters. , 2008, The Journal of chemical physics.

[79]  William S. Price,et al.  Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion, part 1: basic theory , 1997 .

[80]  Julien Cohen-Adad,et al.  Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast , 2015, NeuroImage.

[81]  Mark F. Lythgoe,et al.  Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison , 2012, NeuroImage.

[82]  W. Edelstein,et al.  A signal-to-noise calibration procedure for NMR imaging systems. , 1984, Medical physics.

[83]  A. Anderson Measurement of fiber orientation distributions using high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[84]  R. Caminiti,et al.  Areal differences in diameter and length of corticofugal projections. , 2012, Cerebral Cortex.

[85]  R. Caminiti,et al.  The diameter of cortical axons depends both on the area of origin and target. , 2014, Cerebral cortex.

[86]  J. Helpern,et al.  Double-pulsed diffusional kurtosis imaging. , 2014, NMR in biomedicine.

[87]  M. Ptito,et al.  Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI , 2012, Magnetic resonance in medicine.

[88]  Sébastien Ourselin,et al.  Fast free-form deformation using graphics processing units , 2010, Comput. Methods Programs Biomed..

[89]  Arthur W. Toga,et al.  Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template , 2008, NeuroImage.

[90]  Jean-Philippe Thiran,et al.  COMMIT: Convex Optimization Modeling for Microstructure Informed Tractography , 2015, IEEE Transactions on Medical Imaging.

[91]  G. Larry Bretthorst,et al.  Automatic Phasing of Mr Images. Part I: Linearly Varying Phase , 2007 .

[92]  Dmitry S. Novikov,et al.  Mesoscopic structure of neuronal tracts from time-dependent diffusion , 2015, NeuroImage.

[93]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[94]  Thomas Witzel,et al.  HIgh b-value and high Resolution Integrated Diffusion (HIBRID) imaging , 2017, NeuroImage.

[95]  Jelle Veraart,et al.  In vivo observation and biophysical interpretation of time-dependent diffusion in human white matter , 2016, NeuroImage.

[96]  W. Perman,et al.  Improved detectability in low signal-to-noise ratio magnetic resonance images by means of a phase-corrected real reconstruction. , 1989, Medical physics.

[97]  Steen Moeller,et al.  Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project , 2013, NeuroImage.

[98]  Hui Zhang,et al.  PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: Insight from a simulation study , 2015, Magnetic resonance in medicine.

[99]  F. Szczepankiewicz,et al.  Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector , 2014, Front. Physics.

[100]  Julien Cohen-Adad,et al.  The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter , 2015, NeuroImage.

[101]  Yogesh Rathi,et al.  High‐resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: Simultaneous multislice (gSlider‐SMS) , 2018, Magnetic resonance in medicine.

[102]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[103]  Timothy Edward John Behrens,et al.  The CONNECT project: Combining macro- and micro-structure , 2013, NeuroImage.

[104]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[105]  D. Barazany,et al.  AxCaliber 3D , 2010 .

[106]  Peter J Basser,et al.  Noninvasive bipolar double-pulsed-field-gradient NMR reveals signatures for pore size and shape in polydisperse, randomly oriented, inhomogeneous porous media. , 2010, The Journal of chemical physics.

[107]  Bennett A. Landman,et al.  Histological validation of diffusion MRI fiber orientation distributions and dispersion , 2018, NeuroImage.