Numerical analysis of strongly nonlinear PDEs *

We review the construction and analysis of numerical methods for strongly nonlinear PDEs, with an emphasis on convex and non-convex fully nonlinear equations and the convergence to viscosity solutions. We begin by describing a fundamental result in this area which states that stable, consistent and monotone schemes converge as the discretization parameter tends to zero. We review methodologies to construct finite difference, finite element and semi-Lagrangian schemes that satisfy these criteria, and, in addition, discuss some rather novel tools that have paved the way to derive rates of convergence within this framework.

[1]  J. Mirebeau Discretization of the 3D Monge-Ampere operator, between Wide Stencils and Power Diagrams , 2015, 1503.00947.

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  Jean-Marie Mirebeau,et al.  Monotone and consistent discretization of the Monge-Ampère operator , 2014, Math. Comput..

[4]  R. Hoppe Multi-grid methods for Hamilton-Jacobi-Bellman equations , 1986 .

[5]  R. Bellman Dynamic programming. , 1957, Science.

[6]  Ricardo H. Nochetto,et al.  Pointwise rates of convergence for the Oliker–Prussner method for the Monge–Ampère equation , 2019, Numerische Mathematik.

[7]  Xiaobing Feng,et al.  Finite element methods for second order linear elliptic partial differential equations in non-divergence form , 2015, Math. Comput..

[8]  Gerard Awanou,et al.  Standard finite elements for the numerical resolution of the elliptic Monge–Ampère equation: classical solutions , 2013, 1310.4576.

[9]  S. Gerschgorin,et al.  Fehlerabschätzung für das Differenzenverfahren zur Lösung partieller Differentialgleichungen , 1930 .

[10]  Bernhard Kawohl,et al.  Comparison Principle for Viscosity Solutions of Fully Nonlinear, Degenerate Elliptic Equations , 2007 .

[11]  Hung-Ju Kuo,et al.  Positive difference operators on general meshes , 1996 .

[12]  Hung-Ju Kuo,et al.  A note on the discrete Aleksandrov-Bakelman maximum principle , 2000 .

[13]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[14]  Jeremy Levesley,et al.  Numerical Mathematics and Advanced Applications 2011 , 2013 .

[15]  Larry L. Schumaker,et al.  Trivariate Cr Polynomial Macroelements , 2007 .

[16]  Justin W. L. Wan,et al.  Multigrid Methods for Second Order Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations , 2013, SIAM J. Sci. Comput..

[17]  N SIAMJ. VARIATIONAL FORMULATION AND NUMERICAL ANALYSIS OF LINEAR ELLIPTIC EQUATIONS IN NONDIVERGENCE FORM WITH CORDES COEFFICIENTS∗ , 2017 .

[18]  A. Zygmund,et al.  On the existence of certain singular integrals , 1952 .

[19]  Guy Barles,et al.  Error Bounds for Monotone Approximation Schemes for Hamilton-Jacobi-Bellman Equations , 2005, SIAM J. Numer. Anal..

[20]  Espen R. Jakobsen,et al.  On Error Bounds for Approximation Schemes for Non-Convex Degenerate Elliptic Equations , 2004 .

[21]  Arieh Iserles,et al.  A First Course in the Numerical Analysis of Differential Equations: The diffusion equation , 2008 .

[22]  M. V. Safonov,et al.  UNIMPROVABILITY OF ESTIMATES OF HÖLDER CONSTANTS FOR SOLUTIONS OF LINEAR ELLIPTIC EQUATIONS WITH MEASURABLE COEFFICIENTS , 1988 .

[23]  L. Evans,et al.  Partial Differential Equations , 1941 .

[24]  C. Baiocchi,et al.  Estimations d’Erreur dans L ∞ pour les Inequations a Obstacle , 1977 .

[25]  Adam M. Oberman,et al.  Convergent Finite Difference Solvers for Viscosity Solutions of the Elliptic Monge-Ampère Equation in Dimensions Two and Higher , 2010, SIAM J. Numer. Anal..

[26]  Roland Glowinski,et al.  Recent Developments in Numerical Methods for Fully Nonlinear Second Order Partial Differential Equations , 2013, SIAM Rev..

[27]  W. Wasow,et al.  On the Approximation of Linear Elliptic Differential Equations by Difference Equations with Positive Coefficients , 1952 .

[28]  Avner Friedman,et al.  Optimal stochastic switching and the Dirichlet problem for the Bellman equation , 1979 .

[29]  Messaoud Boulbrachene,et al.  Optimal L ∞-Error Estimate of a Finite Element Method for Hamilton–Jacobi–Bellman Equations , 2009 .

[30]  N. V. Krylov On the Rate of Convergence of Difference Approximations for Uniformly Nondegenerate Elliptic Bellman’s Equations , 2012 .

[31]  M. Haiour,et al.  The finite element approximation of Hamilton-Jacobi-Bellman equations , 2001 .

[32]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[33]  L. D. Prussner,et al.  On the numerical solution of the equation ∂2z/∂x2 ∂2z/∂y2−(∂2z/∂x∂y)2=f and its discretizations. I , 1988 .

[34]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[35]  Cristian E. Gutiérrez,et al.  The Monge―Ampère Equation , 2001 .

[36]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[37]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[38]  J. Urbas,et al.  NONLINEAR ELLIPTIC AND PARABOLIC EQUATIONS OF THE SECOND ORDER , 1989 .

[39]  P. Lions Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, Part I , 1983 .

[40]  Endre Süli,et al.  Discontinuous Galerkin Finite Element Approximation of Nondivergence Form Elliptic Equations with Cordès Coefficients , 2012, SIAM J. Numer. Anal..

[41]  Larry L. Schumaker,et al.  Trivariate C Polynomial Macro-Elements , 2006 .

[42]  Adam M. Oberman,et al.  Numerical solution of the Optimal Transportation problem using the Monge-Ampère equation , 2012, J. Comput. Phys..

[43]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.

[44]  Klaus Böhmer,et al.  On Finite Element Methods for Fully Nonlinear Elliptic Equations of Second Order , 2008, SIAM J. Numer. Anal..

[45]  Roland Glowinski,et al.  Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type , 2006 .

[46]  Nikos Katzourakis An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in L , 2014 .

[47]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[48]  Michael Neilan,et al.  A nonconforming Morley finite element method for the fully nonlinear Monge-Ampère equation , 2010, Numerische Mathematik.

[49]  Mabel M. Tidball,et al.  Fast solution of general nonlinear fixed point problems , 1992 .

[50]  Michael Neilan,et al.  Convergence analysis of a finite element method for second order non-variational elliptic problems , 2017, J. Num. Math..

[51]  Ricardo H. Nochetto,et al.  Discrete ABP Estimate and Convergence Rates for Linear Elliptic Equations in Non-divergence Form , 2014, Found. Comput. Math..

[52]  Giuseppe Mingione,et al.  Regularity of minima: An invitation to the dark side of the calculus of variations , 2006 .

[53]  Louis Nirenberg,et al.  On nonlinear elliptic partial differential equations and hölder continuity , 1953 .

[54]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[55]  Andrzej Swiech,et al.  Representation formulas for solutions of isaacs integro-PDE , 2013 .

[56]  Chen Yi Comparison principle for viscosity solutions of fully nonlinear elliptic integro-differential equation , 2004 .

[57]  Hung-Ju Kuo,et al.  Linear elliptic difference inequalities with random coefficients , 1990 .

[58]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .

[59]  Xiaobing Feng,et al.  Analysis of Galerkin Methods for the Fully Nonlinear Monge-Ampère Equation , 2007, J. Sci. Comput..

[60]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[61]  Hasnaa Zidani,et al.  Some Convergence Results for Howard's Algorithm , 2009, SIAM J. Numer. Anal..

[62]  Espen R. Jakobsen On error bounds for monotone approximation schemes for multi-dimensional Isaacs equations , 2006, Asymptot. Anal..

[63]  S. C. Brenner,et al.  Finite element approximations of the three dimensional Monge-Ampère equation , 2012 .

[64]  Olga Turanova Error estimates for approximations of nonhomogeneous nonlinear uniformly elliptic equations , 2015 .

[65]  M. Safonov,et al.  Harnack's inequality for elliptic equations and the Hölder property of their solutions , 1983 .

[66]  Alain Bensoussan,et al.  Impulse Control and Quasi-Variational Inequalities , 1984 .

[67]  L. Evans On solving certain nonlinear partial differential equations by accretive operator methods , 1980 .

[68]  S. C. Brenner,et al.  {C}^0$ penalty methods for the fully nonlinear Monge-Ampère equation , 2011 .

[69]  Brittany D. Froese Convergent approximation of non-continuous surfaces of prescribed Gaussian curvature , 2016, 1601.06315.

[70]  Vladimir Oliker,et al.  On the numerical solution of the equation $$\frac{{\partial ^2 z}}{{\partial x^2 }}\frac{{\partial ^2 z}}{{\partial y^2 }} - \left( {\frac{{\partial ^2 z}}{{\partial x\partial y}}} \right)^2 = f$$ and its discretizations, I , 1989 .

[71]  Abner J. Salgado,et al.  Finite element approximation of the Isaacs equation , 2015, ESAIM: Mathematical Modelling and Numerical Analysis.

[72]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[73]  P. Lions,et al.  Approximation numérique des équations Hamilton-Jacobi-Bellman , 1980 .

[74]  Crimi,et al.  Volume II , 2018, The Hamburg Dramaturgy by G.E. Lessing.

[75]  Christoph Reisinger,et al.  Penalty Methods for the Solution of Discrete HJB Equations - Continuous Control and Obstacle Problems , 2012, SIAM J. Numer. Anal..

[76]  P. Lions Optimal control of diffusion processes and hamilton–jacobi–bellman equations part 2 : viscosity solutions and uniqueness , 1983 .

[77]  Nikolai Nadirashvili,et al.  Non-classical Solution to Hessian Equation from Cartan Isoparametric Cubic , 2011 .

[78]  Ph. Cortey‐Dumont,et al.  Sur l'Analyse Numérique des Equations de Hamilton‐Jacobi‐Bellman , 1987 .

[79]  Jose-Luis Mendali Some estimates for finite difference approximations , 1989 .

[80]  N. V. Krylov On the Rate of Convergence of Finite-Difference Approximations for Elliptic Isaacs Equations in Smooth Domains , 2014 .

[81]  Antonino Maugeri,et al.  Elliptic and Parabolic Equations with Discontinuous Coefficients , 2000 .

[82]  Serge Vlăduţ,et al.  Singular viscosity solutions to fully nonlinear elliptic equations , 2008 .

[83]  Xiaobing Feng,et al.  Interior Penalty Discontinuous Galerkin Methods for Second Order Linear Non-divergence Form Elliptic PDEs , 2016, Journal of Scientific Computing.

[84]  Dietmar Gallistl,et al.  Variational Formulation and Numerical Analysis of Linear Elliptic Equations in Nondivergence form with Cordes Coefficients , 2016, SIAM J. Numer. Anal..

[85]  Iain Smears,et al.  On the Convergence of Finite Element Methods for Hamilton-Jacobi-Bellman Equations , 2011, SIAM J. Numer. Anal..

[86]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[87]  Luis Silvestre,et al.  Smooth Approximations of Solutions to Nonconvex Fully Nonlinear Elliptic Equations , 2010 .

[88]  Neil S. Trudinger,et al.  Comparison Principles and Pointwise Estimates for Viscosity Solutions of Nonlinear Elliptic Equations , 1988 .

[89]  Endre Süli,et al.  Discontinuous Galerkin finite element methods for time-dependent Hamilton–Jacobi–Bellman equations with Cordes coefficients , 2014, Numerische Mathematik.

[90]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[91]  小池 茂昭,et al.  A beginner's guide to the theory of viscosity solutions , 2004 .

[92]  S. Zagatti On viscosity solutions of Hamilton-Jacobi equations , 2008 .

[93]  Srdjan Stojanovic,et al.  Risk premium and fair option prices under stochastic volatility: the HARA solution , 2005 .

[94]  Omar Lakkis,et al.  A Finite Element Method for Second Order Nonvariational Elliptic Problems , 2010, SIAM J. Sci. Comput..

[95]  Yann Brenier,et al.  Weak Existence for the Semigeostrophic Equations Formulated as a Coupled Monge-Ampère/Transport Problem , 1998, SIAM J. Appl. Math..

[96]  Matthias Ehrhardt,et al.  On the non-existence of higher order monotone approximation schemes for HJB equations , 2016, Appl. Math. Lett..

[97]  Max Jensen,et al.  Convergent Semi-Lagrangian Methods for the Monge-Ampère Equation on Unstructured Grids , 2016, SIAM J. Numer. Anal..

[98]  A. H. Schatz,et al.  On the quasi-optimality in _{∞} of the ¹-projection into finite element spaces , 1982 .

[99]  M. James Controlled markov processes and viscosity solutions , 1994 .

[100]  Gerard Awanou Quadratic mixed finite element approximations of the Monge–Ampère equation in 2D , 2014 .

[101]  Paul Houston,et al.  An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems , 2011 .

[102]  Xiaobing Feng,et al.  Local Discontinuous Galerkin Methods for One-Dimensional Second Order Fully Nonlinear Elliptic and Parabolic Equations , 2012, J. Sci. Comput..

[103]  Xavier Cabré,et al.  Viscosity solutions of elliptic equations , 1995 .

[104]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[105]  Serge Vlăduţ,et al.  Nonclassical Solutions of Fully Nonlinear Elliptic Equations , 2007, 0912.3119.

[106]  Alexander I. Nazarov,et al.  Nonlinear Partial Differential Equations and Related Topics: Dedicated to Nina N. Uraltseva , 2010 .

[107]  H. Holden,et al.  Front Tracking for Hyperbolic Conservation Laws , 2002 .

[108]  N. Trudinger,et al.  The affine Plateau problem , 2004, math/0405541.

[109]  Iain Smears,et al.  Finite element methods with artificial diffusion for Hamilton-Jacobi-Bellman equations , 2013 .

[110]  Antje Baer,et al.  Direct Methods In The Calculus Of Variations , 2016 .

[111]  Xiaobing Feng,et al.  Mixed Finite Element Methods for the Fully Nonlinear Monge-Ampère Equation Based on the Vanishing Moment Method , 2007, SIAM J. Numer. Anal..

[112]  Junping Wang,et al.  A primal-dual weak Galerkin finite element method for second order elliptic equations in non-divergence form , 2015, Math. Comput..

[113]  Gerard Awanou,et al.  Pseudo transient continuation and time marching methods for Monge-Ampère type equations , 2013, Adv. Comput. Math..

[114]  Adam M. Oberman,et al.  Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems , 2006, SIAM J. Numer. Anal..

[115]  Guy Barles,et al.  On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations , 2002 .

[116]  Xu-Jia Wang,et al.  REGULARITY FOR MONGE-AMPERE EQUATION NEAR THE BOUNDARY , 1996 .

[117]  N. Krylov,et al.  Lectures on Elliptic and Parabolic Equations in Holder Spaces , 1996 .

[118]  L. Caffarelli,et al.  Fully Nonlinear Elliptic Equations , 1995 .

[119]  Ricardo H. Nochetto,et al.  Two-scale method for the Monge-Ampère equation: Convergence to the viscosity solution , 2017, Math. Comput..

[120]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[121]  N. Trudinger,et al.  Discrete methods for fully nonlinear elliptic equations , 1992 .

[122]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1991 .

[123]  N. Trudinger,et al.  Boundary regularity for the Monge-Ampere and affine maximal surface equations , 2005, math/0509342.

[124]  Hongjie Dong,et al.  The Rate of Convergence of Finite-Difference Approximations for Parabolic Bellman Equations with Lipschitz Coefficients in Cylindrical Domains , 2007 .

[125]  Susanne C. Brenner,et al.  C0 penalty methods for the fully nonlinear Monge-Ampère equation , 2011, Math. Comput..

[126]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[127]  Endre Süli,et al.  Discontinuous Galerkin Finite Element Approximation of Hamilton-Jacobi-Bellman Equations with Cordes Coefficients , 2014, SIAM J. Numer. Anal..

[128]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[129]  Luis Silvestre,et al.  On the Evans-Krylov theorem , 2009, 0905.1336.

[130]  R. Glowinski,et al.  An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. , 2006 .

[131]  Michael Neilan,et al.  Quadratic Finite Element Approximations of the Monge-Ampère Equation , 2012, Journal of Scientific Computing.

[132]  M. Katsoulakis A representation formula and regularizing properties for viscosity solutions of second-order fully nonlinear degenerate parabolic equations , 1995 .

[133]  Wolfgang Dahmen,et al.  Characterization of Local Strict Convexity Preserving Interpolation Methods by C1 Functions , 1994 .

[134]  M. Kocan Approximation of viscosity solutions of elliptic partial differential equations on minimal grids , 1995 .

[135]  Brittany D. Froese Convergent approximation of surfaces of prescribed Gaussian curvature with weak Dirichlet conditions , 2016 .

[136]  Adam M. Oberman Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian , 2008 .

[137]  Panagiotis E. Souganidis,et al.  A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs , 2008 .

[138]  Kristian Debrabant,et al.  Semi-Lagrangian schemes for linear and fully non-linear diffusion equations , 2009, Math. Comput..

[139]  C. Villani Topics in Optimal Transportation , 2003 .

[140]  N. V. Krylov The Rate of Convergence of Finite-Difference Approximations for Bellman Equations with Lipschitz Coefficients , 2004 .

[141]  Alexander Ženíšek Hermite interpolation on simplexes in the finite element method , 1973 .

[142]  N. Krylov On the rate of convergence of finite-difference approximations for Bellmans equations with variable coefficients , 2000 .

[143]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[144]  Alessandro Alla,et al.  An Efficient Policy Iteration Algorithm for Dynamic Programming Equations , 2013, SIAM J. Sci. Comput..

[145]  Enrique Otárola,et al.  Convergence rates for the classical, thin and fractional elliptic obstacle problems , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.