Neuroendocrine control of synaptic transmission by PHAC-1 in C. elegans

A dynamic interplay between synaptic and neuromodulatory signalling guarantees flexible but robust neuronal circuits. Presynaptic modulation plays a crucial role in controlling the excitatory-inhibitory balance within networks. Here, we designed a genetic screen to identify genes involved in the neuromodulation of the C. elegans neuromuscular junctions (NMJ) and identified the orthologs of the Protein Phosphatase 1 regulatory subunit PHACTR1 (phac-1) and the presynaptic phosphoproteins Synapsin (snn-1). Five de novo variants of human PHACTR1 are associated with severe early-onset epilepsies (DEE70). To understand the impact of these variants, we introduced the DEE70 mutations into phac-1. These mutations resulted in the formation of a constitutively active PP1-PHAC-1 holoenzyme that disrupts cholinergic signalling at the NMJ. By using quantitative fluorescence imaging, electron microscopy and electrophysiology, we found that the constitutive holoenzyme alters the synaptic vesicle cycle, reduces the synaptic vesicle reserve pool, and increases neuropeptide release by dense-core vesicles. Notably, while SNN-1 phosphoregulation contributes to NMJ signalling, genetic interactions suggest that SNN-1 is not the main effector of PP1-PHAC-1 holoenzyme signalling. Collectively, our results confirm the pathogenicity of DEE70 variants, clarify their dominant-positive effects, and provide evidence of a presynaptic mode of action for DEE70.

[1]  C. Fang-Yen,et al.  A proprioceptive feedback circuit drives Caenorhabditis elegans locomotor adaptation through dopamine signaling. , 2023, Proceedings of the National Academy of Sciences of the United States of America.

[2]  F. Benfenati,et al.  The different clinical facets of SYN1-related neurodevelopmental disorders , 2022, Frontiers in Cell and Developmental Biology.

[3]  F. Benfenati,et al.  Developmental and epileptic encephalopathies: from genetic heterogeneity to phenotypic continuum. , 2022, Physiological reviews.

[4]  Christophe Leterrier,et al.  Distinct nano-structures support a multifunctional role of actin at presynapses , 2022, bioRxiv.

[5]  V. Salpietro,et al.  Synaptopathies in Developmental and Epileptic Encephalopathies: A Focus on Pre-synaptic Dysfunction , 2022, Frontiers in Neurology.

[6]  Mark J Alkema,et al.  Co-transmission of neuropeptides and monoamines choreograph the C. elegans escape response , 2022, PLoS genetics.

[7]  J. Rosenfeld,et al.  Functional analysis of a novel de novo variant in PPP5C associated with microcephaly, seizures, and developmental delay , 2022, bioRxiv.

[8]  Y. Liu,et al.  The endophilin curvature-sensitive motif requires electrostatic guidance to recycle synaptic vesicles in vivo , 2021, bioRxiv.

[9]  J. Richmond,et al.  Protocols for electrophysiological recordings and electron microscopy at C. elegans neuromuscular junction , 2021, STAR protocols.

[10]  Yu Wang,et al.  A novel dual Ca2+ sensor system regulates Ca2+-dependent neurotransmitter release , 2021, The Journal of cell biology.

[11]  R. Treisman,et al.  Mutation in PHACTR1 associated with multifocal epilepsy with infantile spasms and hypsarrhythmia , 2020, Clinical genetics.

[12]  B. Sabatini,et al.  Bombesin-like peptide recruits disinhibitory cortical circuits and enhances fear memories , 2020, Cell.

[13]  R. Tsien,et al.  Synaptic vesicle traffic is supported by transient actin filaments and regulated by PKA and NO , 2020, Nature Communications.

[14]  C. Mello,et al.  Melting dsDNA Donor Molecules Greatly Improves Precision Genome Editing in Caenorhabditis elegans , 2020, Genetics.

[15]  Janet Iwasa,et al.  SynapsEM: Computer-Assisted Synapse Morphometry , 2020, bioRxiv.

[16]  R. Treisman,et al.  Molecular basis for substrate specificity of the Phactr1/PP1 phosphatase holoenzyme , 2020, bioRxiv.

[17]  M. Cousin,et al.  Presynaptic dysfunction in neurodevelopmental disorders: Insights from the synaptic vesicle life cycle , 2020, Journal of neurochemistry.

[18]  I. Mori,et al.  Neural Coding of Thermal Preferences in the Nematode Caenorhabditis elegans , 2020, eNeuro.

[19]  A. Morris,et al.  Functional analysis of epilepsy‐associated variants in STXBP1/Munc18‐1 using humanized Caenorhabditis elegans , 2020, Epilepsia.

[20]  A. Nazir,et al.  Human insulin modulates α-synuclein aggregation via DAF-2/DAF-16 signalling pathway by antagonising DAF-2 receptor in C. elegans model of Parkinson’s disease , 2020, Oncotarget.

[21]  Szi-chieh Yu,et al.  Synapsin Is Required for Dense Core Vesicle Capture and cAMP-Dependent Neuropeptide Release , 2019, The Journal of Neuroscience.

[22]  Yishi Jin,et al.  Neuronal transcriptome analyses reveal novel neuropeptide modulators of excitation and inhibition imbalance in C. elegans , 2019, bioRxiv.

[23]  T. Südhof,et al.  Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses , 2019, Cell.

[24]  C. Schwarzer,et al.  Dynorphin‐based “release on demand” gene therapy for drug‐resistant temporal lobe epilepsy , 2019, EMBO molecular medicine.

[25]  Talley J. Lambert,et al.  FPbase: a community-editable fluorescent protein database , 2019, Nature Methods.

[26]  K. Nagata,et al.  De novo PHACTR1 mutations in West syndrome and their pathophysiological effects , 2018, Brain : a journal of neurology.

[27]  Avelino Javer,et al.  Powerful and interpretable behavioural features for quantitative phenotyping of Caenorhabditis elegans , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[28]  J. Kaplan,et al.  Heterodimerization of UNC-13/RIM regulates synaptic vesicle release probability but not priming in C. elegans , 2018, bioRxiv.

[29]  M. de Bono,et al.  Genetic dissection of neuropeptide cell biology at high and low activity in a defined sensory neuron , 2018, Proceedings of the National Academy of Sciences.

[30]  Szi-chieh Yu,et al.  Endophilin A and B Join Forces With Clathrin to Mediate Synaptic Vesicle Recycling in Caenorhabditis elegans , 2018, Front. Mol. Neurosci..

[31]  Kavita Babu,et al.  FLP-18 Functions through the G-Protein-Coupled Receptors NPR-1 and NPR-4 to Modulate Reversal Length in Caenorhabditis elegans , 2018, The Journal of Neuroscience.

[32]  François Dubeau,et al.  High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies. , 2017, American journal of human genetics.

[33]  J. Dittman,et al.  Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder , 2017, The Journal of clinical investigation.

[34]  Wagner Steuer Costa,et al.  Fast cAMP Modulation of Neurotransmission via Neuropeptide Signals and Vesicle Loading , 2017, Current Biology.

[35]  Manuel Zimmer,et al.  Regulation of two motor patterns enables the gradual adjustment of locomotion strategy in Caenorhabditis elegans , 2016, eLife.

[36]  I. Scheffer,et al.  The genetic landscape of the epileptic encephalopathies of infancy and childhood , 2016, The Lancet Neurology.

[37]  S. Nelson,et al.  Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders , 2015, Neuron.

[38]  J. Kaplan,et al.  NLP-12 Engages Different UNC-13 Proteins to Potentiate Tonic and Evoked Release , 2015, The Journal of Neuroscience.

[39]  E. Jorgensen,et al.  Visualizing presynaptic function , 2013, Nature Neuroscience.

[40]  Yishi Jin,et al.  Neuropeptides Function in a Homeostatic Manner to Modulate Excitation-Inhibition Imbalance in C. elegans , 2013, PLoS genetics.

[41]  Mei Zhen,et al.  Hyperactivation of B-Type Motor Neurons Results in Aberrant Synchrony of the Caenorhabditis elegans Motor Circuit , 2013, The Journal of Neuroscience.

[42]  Tiina Viita,et al.  Actin-regulated feedback loop based on Phactr4, PP1 and cofilin maintains the actin monomer pool , 2013, Journal of Cell Science.

[43]  R. Treisman,et al.  G-actin regulates the shuttling and PP1 binding of the RPEL protein Phactr1 to control actomyosin assembly , 2012, Journal of Cell Science.

[44]  Daniel Blankenberg,et al.  CloudMap: A Cloud-Based Pipeline for Analysis of Mutant Genome Sequences , 2012, Genetics.

[45]  R. Treisman,et al.  Structures of the Phactr1 RPEL domain and RPEL motif complexes with G-actin reveal the molecular basis for actin binding cooperativity. , 2012, Structure.

[46]  P. Taghert,et al.  Peptide Neuromodulation in Invertebrate Model Systems , 2012, Neuron.

[47]  E. Marder Neuromodulation of Neuronal Circuits: Back to the Future , 2012, Neuron.

[48]  F. Benfenati,et al.  Synapsins Contribute to the Dynamic Spatial Organization of Synaptic Vesicles in an Activity-Dependent Manner , 2012, The Journal of Neuroscience.

[49]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[50]  Johannes E. Schindelin,et al.  TrakEM2 Software for Neural Circuit Reconstruction , 2012, PloS one.

[51]  Adam A. Bleckert,et al.  Dual pools of actin at presynaptic terminals. , 2012, Journal of neurophysiology.

[52]  Cori Bargmann Beyond the connectome: How neuromodulators shape neural circuits , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[53]  R. Jenkins,et al.  PKC-2 Phosphorylation of UNC-18 Ser322 in AFD Neurons Regulates Temperature Dependency of Locomotion , 2012, The Journal of Neuroscience.

[54]  J. Kaplan,et al.  A Neuropeptide-Mediated Stretch Response Links Muscle Contraction to Changes in Neurotransmitter Release , 2011, Neuron.

[55]  F. Benfenati,et al.  Synapsins: from synapse to network hyperexcitability and epilepsy. , 2011, Seminars in cell & developmental biology.

[56]  J. Dittman,et al.  Complexin Has Opposite Effects on Two Modes of Synaptic Vesicle Fusion , 2011, Current Biology.

[57]  F. Benfenati,et al.  The synapsins: Key actors of synapse function and plasticity , 2010, Progress in Neurobiology.

[58]  M. Bollen,et al.  The extended PP1 toolkit: designed to create specificity. , 2010, Trends in biochemical sciences.

[59]  A. Hyman,et al.  Cortical domain correction repositions the polarity boundary to match the cytokinesis furrow in C. elegans embryos , 2010, Development.

[60]  Erik M. Jorgensen,et al.  A Neuronal Acetylcholine Receptor Regulates the Balance of Muscle Excitation and Inhibition in Caenorhabditis elegans , 2009, PLoS biology.

[61]  S. Husson,et al.  UNC-108/RAB-2 and its effector RIC-19 are involved in dense core vesicle maturation in Caenorhabditis elegans , 2009, The Journal of cell biology.

[62]  E. Jorgensen,et al.  Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction , 2009, Proceedings of the National Academy of Sciences.

[63]  Mario de Bono,et al.  Coordinated regulation of foraging and metabolism in C. elegans by RFamide neuropeptide signaling. , 2009, Cell metabolism.

[64]  P. Swoboda,et al.  Distinct isoforms of the RFX transcription factor DAF-19 regulate ciliogenesis and maintenance of synaptic activity. , 2008, Molecular biology of the cell.

[65]  J. Kaplan,et al.  Profiling Synaptic Proteins Identifies Regulators of Insulin Secretion and Lifespan , 2008, PLoS genetics.

[66]  Naomichi Matsumoto,et al.  De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy , 2008, Nature Genetics.

[67]  K. Anderson,et al.  Phactr4 regulates neural tube and optic fissure closure by controlling PP1-, Rb-, and E2F1-regulated cell-cycle progression. , 2007, Developmental cell.

[68]  M. Verhage,et al.  Interdependence of PKC-Dependent and PKC-Independent Pathways for Presynaptic Plasticity , 2007, Neuron.

[69]  F. Benfenati,et al.  Protein Kinase A-Mediated Synapsin I Phosphorylation Is a Central Modulator of Ca2+-Dependent Synaptic Activity , 2006, The Journal of Neuroscience.

[70]  Timothy R Mahoney,et al.  Analysis of synaptic transmission in Caenorhabditis elegans using an aldicarb-sensitivity assay , 2006, Nature Protocols.

[71]  J. Bessereau,et al.  UNC-13 and UNC-10/Rim Localize Synaptic Vesicles to Specific Membrane Domains , 2006, The Journal of Neuroscience.

[72]  Marc Vidal,et al.  Systematic analysis of genes required for synapse structure and function , 2005, Nature.

[73]  K. Caldwell,et al.  Epileptic-like convulsions associated with LIS-1 in the cytoskeletal control of neurotransmitter signaling in Caenorhabditis elegans. , 2004, Human molecular genetics.

[74]  P. Greengard,et al.  Phactrs 1-4: A family of protein phosphatase 1 and actin regulatory proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Erik M Jorgensen,et al.  Defects in synaptic vesicle docking in unc-18 mutants , 2003, Nature Neuroscience.

[76]  J. Kaplan,et al.  The EGL-21 Carboxypeptidase E Facilitates Acetylcholine Release at Caenorhabditis elegans Neuromuscular Junctions , 2003, The Journal of Neuroscience.

[77]  T. A. Ryan,et al.  Actin has a molecular scaffolding, not propulsive, role in presynaptic function , 2003, Nature Neuroscience.

[78]  L. Brodin,et al.  Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[79]  I. Meinertzhagen,et al.  Endophilin Mutations Block Clathrin-Mediated Endocytosis but Not Neurotransmitter Release , 2002, Cell.

[80]  Thomas C. Südhof,et al.  β Phorbol Ester- and Diacylglycerol-Induced Augmentation of Transmitter Release Is Mediated by Munc13s and Not by PKCs , 2002, Cell.

[81]  E. Jorgensen,et al.  UNC-13 is required for synaptic vesicle fusion in C. elegans , 1999, Nature Neuroscience.

[82]  T. Südhof,et al.  A Phospho-Switch Controls the Dynamic Association of Synapsins with Synaptic Vesicles , 1999, Neuron.

[83]  J. Kaplan,et al.  Serotonin Inhibition of Synaptic Transmission Gαo Decreases the Abundance of UNC-13 at Release Sites , 1999, Neuron.

[84]  G. Ruvkun,et al.  Regulation of Interneuron Function in the C. elegans Thermoregulatory Pathway by the ttx-3 LIM Homeobox Gene , 1997, Neuron.

[85]  J A Crowell,et al.  A genetic selection for Caenorhabditis elegans synaptic transmission mutants. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[86]  K. Brew,et al.  Mutational analysis of the catalytic subunit of muscle protein phosphatase-1. , 1996, Biochemistry.

[87]  I. Mori,et al.  Neural regulation of thermotaxis in Caenorhabditis elegans , 1995, Nature.

[88]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[89]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[90]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[91]  S. Brenner,et al.  The structure of the ventral nerve cord of Caenorhabditis elegans. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[92]  K. Miller,et al.  Goalpha and diacylglycerol kinase negatively regulate the Gqalpha pathway in C. elegans. , 1999, Neuron.