Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design

David Haussler | Jacob Pfeil | Olena Morozova Vaske | Casey S. Greene | Sharon J. Diskin | John M. Maris | Huiyuan Zhang | Sibo Zhao | Jay Bowen | Kathryn Evans | Karthik Kalletla | Joy Jayaseelan | David A. Wheeler | Gregory P. Way | Khushbu Patel | Komal S. Rathi | Christopher Morton | Jo Lynne Rokita | E. Anders Kolb | Richard Gorlick | Siyuan Zheng | Yidong Chen | D. Haussler | D. Wheeler | P. Raman | J. Bowen | J. Gastier-Foster | H. Doddapaneni | J. Maris | C. Greene | P. Houghton | J. Jayaseelan | S. Diskin | Jacob Pfeil | Siyuan Zheng | Yidong Chen | Y. Sanchez | C. Morton | R. Lock | Y. Mossé | Malcolm A. Smith | Z. Momin | C. Mayoh | Xiao-Nan Li | M. Haber | K. Rathi | Lin Qi | C. Reynolds | R. Gorlick | Alvin Farrel | Z. Vaksman | G. Marshall | Kateryna Krytska | Pichai Raman | HarshaVardhan Doddapaneni | Zalman Vaksman | H. Lindsay | Lori S. Hart | S. Coppens | Michelle Haber | F. Braun | Yael P. Mosse | Wendong Zhang | Dias Kurmashev | R. Kurmasheva | Sibo Zhao | E. Kolb | Alvin Farrel | Peter J. Houghton | Xiao-Nan Li | C. Patrick Reynolds | K. Evans | Zeineen Momin | Vanessa Tyrrell | Richard B. Lock | Glenn M. Marshall | Chelsea Mayoh | Julie M. Gastier-Foster | Kristen M. Leraas | Julia W. Böhm | Esther R Berko | Patricia Baxter | Maria F. Cardenas | Kristen A. Upton | Katherine L. Cross | Laura E. Egolf | Nathan M. Kendsersky | Krutika S. Gaonkar | Apexa Modi | Esther R. Berko | Gonzalo Lopez | Jonas Nance | Kristyn McCoy | Hannah McCalmont | Katerina Bendak | Frank K. Braun | Lin Qi | Yunchen Du | Holly B. Lindsay | Jack Shu | Dias Kurmashev | Anthony C. Bryan | Sara E. Coppens | Gregory I. Sacks | Gregory J. Gatto | Yolanda Sanchez | Raushan T. Kurmasheva | A. C. Bryan | O. Vaske | P. Baxter | V. Tyrrell | H. Mccalmont | Apexa Modi | N. Kendsersky | Khushbu Patel | Gonzalo López | Jonas Nance | Kristyn Mccoy | K. Bendak | Karthik Kalletla | Yu-Yun Du | J. Shu | Wendong Zhang | K. Krytska | K. Leraas | G. Gatto | Huiyuan Zhang

[1]  Gennady Korotkevich,et al.  Fast gene set enrichment analysis , 2019, bioRxiv.

[2]  Allison P. Heath,et al.  Pediatric High Grade Glioma Resources From the Children’s Brain Tumor Tissue Consortium (CBTTC) and Pediatric Brain Tumor Atlas (PBTA) , 2019, bioRxiv.

[3]  Daniel Martinez,et al.  An antibody-drug conjugate directed to the ALK receptor demonstrates efficacy in preclinical models of neuroblastoma , 2019, Science Translational Medicine.

[4]  David T. W. Jones,et al.  A biobank of patient-derived pediatric brain tumor models , 2018, Nature Medicine.

[5]  Yassen Assenov,et al.  Maftools: efficient and comprehensive analysis of somatic variants in cancer , 2018, Genome research.

[6]  Christopher T. Saunders,et al.  Strelka2: fast and accurate calling of germline and somatic variants , 2018, Nature Methods.

[7]  J. Maris,et al.  Abstract LB-136: Pediatric Preclinical Testing Consortium evaluation of a DLL3-targeted antibody drug conjugate rovalpituzumab tesirine, in neuroblastoma , 2018, Clinical Research (Excluding Clinical Trials).

[8]  E. Lecona,et al.  Targeting ATR in cancer , 2018, Nature Reviews Cancer.

[9]  Michael C. Heinold,et al.  Author Correction: The landscape of genomic alterations across childhood cancers , 2018, Nature.

[10]  Peter J. Park,et al.  Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing , 2018, bioRxiv.

[11]  Michael T. Zimmermann,et al.  Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas , 2018, Cell reports.

[12]  Gregory P. Way,et al.  Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas , 2018, Cell reports.

[13]  Michael C. Heinold,et al.  The landscape of genomic alterations across childhood cancers , 2018, Nature.

[14]  Xin Zhou,et al.  Pan-cancer genome and transcriptome analyses of 1,699 pediatric leukemias and solid tumors , 2018, Nature.

[15]  Hua Sun,et al.  TissGDB: tissue-specific gene database in cancer , 2017, Nucleic Acids Res..

[16]  B. Teicher,et al.  Abstract LB-B16: The AKR1C3-Activated Prodrug OBI-3424 Exerts Profound In Vivo Efficacy Against Preclinical Models of T-Cell Acute Lymphoblastic Leukemia (T-ALL); a Pediatric Preclinical Testing Consortium Study , 2018 .

[17]  David Haussler,et al.  TumorMap: Exploring the Molecular Similarities of Cancer Samples in an Interactive Portal. , 2017, Cancer research.

[18]  Kun Mu,et al.  Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma , 2017, Cancer cell.

[19]  J. Khan,et al.  Identification of GPC2 as an Oncoprotein and Candidate Immunotherapeutic Target in High-Risk Neuroblastoma. , 2017, Cancer cell.

[20]  L. Tang,et al.  Loss of heterozygosity on chromosome 16q increases relapse risk in Wilms’ tumor: a meta-analysis , 2017, Oncotarget.

[21]  Anang A. Shelat,et al.  Orthotopic Patient-Derived Xenografts of Pediatric Solid Tumors , 2017, Nature.

[22]  Roland Eils,et al.  The whole-genome landscape of medulloblastoma subtypes , 2017, Nature.

[23]  Daniel Baumhoer,et al.  Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma , 2017, Nature Communications.

[24]  Cheng Cheng,et al.  THE GENOMIC LANDSCAPE OF PEDIATRIC AND YOUNG ADULT T-LINEAGE ACUTE LYMPHOBLASTIC LEUKEMIA , 2017, Nature Genetics.

[25]  Timothy L. Tickle,et al.  STAR-Fusion: Fast and Accurate Fusion Transcript Detection from RNA-Seq , 2017, bioRxiv.

[26]  Peter J. Park,et al.  NGSCheckMate: software for validating sample identity in next-generation sequencing studies within and across data types , 2017, Nucleic acids research.

[27]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[28]  P. Raman,et al.  Enrichment of Targetable Mutations in the Relapsed Neuroblastoma Genome , 2016, PLoS genetics.

[29]  Gregory P. Way,et al.  A machine learning classifier trained on cancer transcriptomes detects NF1 inactivation signal in glioblastoma , 2016, BMC Genomics.

[30]  Roland Eils,et al.  Complex heatmaps reveal patterns and correlations in multidimensional genomic data , 2016, Bioinform..

[31]  R. Lock,et al.  A single nucleotide polymorphism genotyping platform for the authentication of patient derived xenografts , 2016, Oncotarget.

[32]  Alexey Sergushichev,et al.  An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation , 2016 .

[33]  Donna Neuberg,et al.  The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice. , 2016, Cancer cell.

[34]  B. Taylor,et al.  deconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution , 2016, Genome Biology.

[35]  P. Campbell,et al.  Unscrambling the genomic chaos of osteosarcoma reveals extensive transcript fusion, recurrent rearrangements and frequent novel TP53 aberrations , 2015, Oncotarget.

[36]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[37]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[38]  R. Gibbs,et al.  Genomic profiling of Sézary syndrome identifies alterations of key T cell signaling and differentiation genes , 2015, Nature Genetics.

[39]  E. Birney,et al.  Human genomics: The end of the start for population sequencing , 2015, Nature.

[40]  Sven Rahmann,et al.  Mutational dynamics between primary and relapse neuroblastomas , 2015, Nature Genetics.

[41]  Gudrun Schleiermacher,et al.  Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations , 2015, Nature Genetics.

[42]  G. Abecasis,et al.  An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data , 2015, Genome research.

[43]  Jing Ma,et al.  Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia , 2015, Nature Communications.

[44]  W. Sung,et al.  TP53 intron 1 hotspot rearrangements are specific to sporadic osteosarcoma and can cause Li-Fraumeni syndrome , 2015, Oncotarget.

[45]  Edwin Cuppen,et al.  Sambamba: fast processing of NGS alignment formats , 2015, Bioinform..

[46]  Donna M. Muzny,et al.  BCOR-CCNB3 Fusions Are Frequent in Undifferentiated Sarcomas of Male Children , 2014, Modern Pathology.

[47]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[48]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[49]  O. Kallioniemi,et al.  FusionCatcher – a tool for finding somatic fusion genes in paired-end RNA-sequencing data , 2014, bioRxiv.

[50]  Li Ding,et al.  Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. , 2014, Cancer discovery.

[51]  F. Speleman,et al.  Emergence of new ALK mutations at relapse of neuroblastoma. , 2014, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[52]  G. Getz,et al.  Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. , 2014, Cancer discovery.

[53]  Simon White,et al.  Launching genomics into the cloud: deployment of Mercury, a next generation sequence analysis pipeline , 2014, BMC Bioinformatics.

[54]  R. Pieters,et al.  Gain of 1q is a marker of poor prognosis in Wilms' tumors , 2013, Genes, chromosomes & cancer.

[55]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[56]  Emmanuel Barillot,et al.  Breakpoint Features of Genomic Rearrangements in Neuroblastoma with Unbalanced Translocations and Chromothripsis , 2013, PloS one.

[57]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[58]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer genes , 2014 .

[59]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[60]  Steven J. M. Jones,et al.  The genetic landscape of high-risk neuroblastoma , 2013, Nature Genetics.

[61]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[62]  L. Mariani,et al.  Loss of heterozygosity analysis at different chromosome regions in Wilms tumor confirms 1p allelic loss as a marker of worse prognosis: a study from the Italian Association of Pediatric Hematology and Oncology. , 2013, The Journal of urology.

[63]  Jun Wang,et al.  SOAPfuse: an algorithm for identifying fusion transcripts from paired-end RNA-Seq data , 2013, Genome Biology.

[64]  Chris Williams,et al.  RNA-SeQC: RNA-seq metrics for quality control and process optimization , 2012, Bioinform..

[65]  D. Zwijnenburg,et al.  Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes , 2012, Nature.

[66]  Nazneen Rahman,et al.  Stratification of Wilms tumor by genetic and epigenetic analysis , 2012, Oncotarget.

[67]  David T. W. Jones,et al.  Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations , 2012, Cell.

[68]  Kiran C. Bobba,et al.  The genetic basis of early T-cell precursor acute lymphoblastic leukaemia , 2012, Nature.

[69]  Aleksandar Milosavljevic,et al.  An integrative variant analysis suite for whole exome next-generation sequencing data , 2012, BMC Bioinformatics.

[70]  M. Hollingshead,et al.  Real-time PCR-based assay to quantify the relative amount of human and mouse tissue present in tumor xenografts , 2011, BMC biotechnology.

[71]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[72]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[73]  Süleyman Cenk Sahinalp,et al.  deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data , 2011, PLoS Comput. Biol..

[74]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[75]  R. Gibbs,et al.  Targeted enrichment beyond the consensus coding DNA sequence exome reveals exons with higher variant densities , 2011, Genome Biology.

[76]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[77]  P. Rao,et al.  A clinically relevant orthotopic xenograft model of ependymoma that maintains the genomic signature of the primary tumor and preserves cancer stem cells in vivo. , 2010, Neuro-oncology.

[78]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[79]  Hongkai Ji,et al.  Analyzing 'omics data using hierarchical models , 2010, Nature Biotechnology.

[80]  G. Weinstock,et al.  A SNP discovery method to assess variant allele probability from next-generation resequencing data. , 2010, Genome research.

[81]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[82]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[83]  Kai Ye,et al.  Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads , 2009, Bioinform..

[84]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[85]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[86]  Jiang Qian,et al.  TiGER: A database for tissue-specific gene expression and regulation , 2008, BMC Bioinformatics.

[87]  Joseph Zeidner,et al.  The pediatric preclinical testing program: Description of models and early testing results , 2007, Pediatric blood & cancer.

[88]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[89]  Peter Houghton,et al.  Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. , 2007, Cancer research.

[90]  Andrew Gelman,et al.  Multilevel (Hierarchical) Modeling: What It Can and Cannot Do , 2006, Technometrics.

[91]  Kathleen F. Kerr,et al.  The External RNA Controls Consortium: a progress report , 2005, Nature Methods.

[92]  M. Pecht,et al.  IC Component Socket Materials , 2005 .

[93]  R. Lock,et al.  Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. , 2004, Blood.

[94]  H. Fine,et al.  Testing of new agents in childhood cancer preclinical models: meeting summary. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[95]  R. Lock,et al.  The nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model of childhood acute lymphoblastic leukemia reveals intrinsic differences in biologic characteristics at diagnosis and relapse. , 2002, Blood.