Difference equations: disconjugacy, principal solutions, Green’s functions, complete monotonicity

We find analogues of known results on nth order linear differen- tial equations for nth order linear difference equations. These include the concept of disconjugacy, P6lya's criterion for disconjugacy, Frobenius fac- torizations, generalized Sturm theorems, existence and properties of prin- cipal solutions, signs of Green's functions, and completely monotone fami- lies of solutions of equations depending on a parameter.

[1]  M. Bôcher Boundary Problems and Green's Functions for Linear Differential and Difference Equations , 1911 .

[2]  M. Fekete,et al.  Über ein problem von laguerre , 1912 .

[3]  G. Pólya,et al.  On the mean-value theorem corresponding to a given linear homogeneous differential equation , 1922 .

[4]  Gabriele Mammana Decomposizione delle espressioni differenziali lineari omogenee in prodotti di fattori simbolici e applicazione relativa allo studio delle equazioni differenziali lineari , 1931 .

[5]  T. Fort,et al.  Finite differences and difference equations in the real domain , 1948 .

[6]  P. Hartman,et al.  Linear Differential and Difference Equations with Monotone Solutions , 1953 .

[7]  F. R. Gantmakher,et al.  Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme , 1960 .

[8]  L. Lorch,et al.  Monotonicity of the differences of zeros of Bessel functions as a function of order , 1964 .

[9]  T. Sherman,et al.  Properties of solutions of n-th order linear differential equations , 1965 .

[10]  P. Hartman PRINCIPAL SOLUTIONS OF DISCONJUGATE n-TH ORDER LINEAR DIFFERENTIAL EQUATIONS. , 1969 .

[11]  J. Cooper TOTAL POSITIVITY, VOL. I , 1970 .

[12]  P. Hartman Corrigendum and Addendum: Principal Solutions of Disconjugate n-th Order Linear Differential Equations , 1971 .

[13]  P. Hartman Completely monotone families of solutions of $n$-th order linear differential equations and infinitely divisible distributions , 1976 .