Parametric Interpolation Framework for 1-D Scalar Conservation Laws with Non-Convex Flux Functions

In this paper we present a novel framework for obtaining high order numerical methods for 1-D scalar conservation laws with non-convex flux functions. When solving Riemann problems, the Oleinik entropy condition, [16], is satisfied when the resulting shocks and rarefactions correspond to correct portions of the appropriate (upper or lower) convex envelope of the flux function. We show that the standard equal-area principle fails to select these solutions in general, and therefore we introduce a generalized equal-area principle which always selects the weak solution corresponding to the correct convex envelope. The resulting numerical scheme presented here relies on the area-preserving parametric interpolation framework introduced in [14] and locates shock position to fifth order in space, conserves area exactly and admits weak solutions which satisfy the Oleinik entropy condition numerically regardless of the initial states.

[1]  Philippe G. LeFloch,et al.  Revisiting the method of characteristics via a convex hull algorithm , 2014, J. Comput. Phys..

[2]  Jun-Hai Yong,et al.  Geometric Hermite curves with minimum strain energy , 2004, Comput. Aided Geom. Des..

[3]  Malcolm A. Sabin,et al.  High accuracy geometric Hermite interpolation , 1987, Comput. Aided Geom. Des..

[4]  S. E. Buckley,et al.  Mechanism of Fluid Displacement in Sands , 1942 .

[5]  Geoffrey McGregor,et al.  Area-preserving geometric Hermite interpolation , 2018, J. Comput. Appl. Math..

[6]  Rida T. Farouki,et al.  Construction of G1 planar Hermite interpolants with prescribed arc lengths , 2016, Comput. Aided Geom. Des..

[7]  Qianqian Hu,et al.  Planar cubic G1 and quintic G2 Hermite interpolations via curvature variation minimization , 2018, Comput. Graph..

[8]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[9]  C. A. Neff,et al.  Hermite interpolation by Pythagorean hodograph quintics , 1995 .

[10]  William John Macquorn Rankine,et al.  XV. On the thermodynamic theory of waves of finite longitudinal disturbance , 1870, Philosophical Transactions of the Royal Society of London.

[11]  O. Oleinik Discontinuous solutions of non-linear differential equations , 1963 .

[12]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[13]  Benjamin Seibold,et al.  An exactly conservative particle method for one dimensional scalar conservation laws , 2008, J. Comput. Phys..

[14]  Geoffrey McGregor,et al.  Parametric Interpolation Framework for Scalar Conservation Laws , 2019, J. Comput. Appl. Math..

[15]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[16]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .