Lifted Relational Neural Networks: Efficient Learning of Latent Relational Structures

We propose a method to combine the interpretability and expressive power of firstorder logic with the effectiveness of neural network learning. In particular, we introduce a lifted framework in which first-order rules are used to describe the structure of a given problem setting. These rules are then used as a template for constructing a number of neural networks, one for each training and testing example. As the different networks corresponding to different examples share their weights, these weights can be efficiently learned using stochastic gradient descent. Our framework provides a flexible way for implementing and combining a wide variety of modelling constructs. In particular, the use of first-order logic allows for a declarative specification of latent relational structures, which can then be efficiently discovered in a given data set using neural network learning. Experiments on 78 relational learning benchmarks clearly demonstrate the effectiveness of the framework.

[1]  Artur S. d'Avila Garcez,et al.  Fast relational learning using bottom clause propositionalization with artificial neural networks , 2013, Machine Learning.

[2]  William W. Cohen TensorLog: A Differentiable Deductive Database , 2016, ArXiv.

[3]  Kenneth O. Stanley,et al.  On the Performance of Indirect Encoding Across the Continuum of Regularity , 2011, IEEE Transactions on Evolutionary Computation.

[4]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[5]  Steven Schockaert,et al.  Stacked Structure Learning for Lifted Relational Neural Networks , 2017, ILP.

[6]  Pierre Baldi,et al.  Graph kernels for chemical informatics , 2005, Neural Networks.

[7]  William W. Wadge,et al.  Minimum model semantics for logic programs with negation-as-failure , 2003, TOCL.

[8]  Thomas Demeester,et al.  Lifted Rule Injection for Relation Embeddings , 2016, EMNLP.

[9]  Jordan B. Pollack,et al.  Recursive Distributed Representations , 1990, Artif. Intell..

[10]  Jennifer Neville,et al.  Relational Dependency Networks , 2007, J. Mach. Learn. Res..

[11]  Stephen Muggleton,et al.  Is Mutagenesis still challenging ? , 2005 .

[12]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[13]  David Zuckerman,et al.  Optimal Speedup of Las Vegas Algorithms , 1993, Inf. Process. Lett..

[14]  Steffen Hölldobler,et al.  Approximating the Semantics of Logic Programs by Recurrent Neural Networks , 1999, Applied Intelligence.

[15]  Kristian Kersting,et al.  Learning Markov Logic Networks via Functional Gradient Boosting , 2011, 2011 IEEE 11th International Conference on Data Mining.

[16]  Attila Kiss,et al.  Fuzzy Extension of Datalog , 1995, Acta Cybern..

[17]  Franco Scarselli,et al.  Neural networks for relational learning: an experimental comparison , 2011, Machine Learning.

[18]  Ashwin Srinivasan,et al.  The Predictive Toxicology Challenge 2000-2001 , 2001, Bioinform..

[19]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[20]  Kristian Kersting,et al.  Gradient-based boosting for statistical relational learning: The relational dependency network case , 2011, Machine Learning.

[21]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[22]  Ondrej Kuzelka,et al.  Lifted Relational Neural Networks , 2015, CoCo@NIPS.

[23]  Marco Botta,et al.  FONN: Combining First Order Logic with Connectionist Learning , 1997, ICML.

[24]  Krysia Broda,et al.  Neural-symbolic learning systems - foundations and applications , 2012, Perspectives in neural computing.

[25]  Luc De Raedt,et al.  Integrating Naïve Bayes and FOIL , 2007, J. Mach. Learn. Res..

[26]  Jude Shavlik,et al.  Refinement ofApproximate Domain Theories by Knowledge-Based Neural Networks , 1990, AAAI.

[27]  Kristian Kersting,et al.  Relational linear programming , 2017, Artif. Intell..

[28]  Jan Ramon,et al.  Multi instance neural networks , 2000, ICML 2000.

[29]  Peter A. Flach,et al.  Comparative Evaluation of Approaches to Propositionalization , 2003, ILP.

[30]  Luc De Raedt,et al.  Statistical Relational Artificial Intelligence: Logic, Probability, and Computation , 2016, Statistical Relational Artificial Intelligence.

[31]  Robert A. Kowalski,et al.  The Semantics of Predicate Logic as a Programming Language , 1976, JACM.

[32]  Luc De Raedt,et al.  Logical and relational learning , 2008, Cognitive Technologies.

[33]  Peter A. Flach First-Order Logic , 2018, Encyclopedia of Machine Learning.

[34]  Geoffrey E. Hinton Mapping Part-Whole Hierarchies into Connectionist Networks , 1990, Artif. Intell..

[35]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[36]  Martine De Cock,et al.  Fuzzy Answer Set Programming: An Introduction , 2013, Soft Computing: State of the Art Theory and Novel Applications.

[37]  Pedro M. Domingos,et al.  Statistical predicate invention , 2007, ICML '07.

[38]  Hendrik Blockeel,et al.  Using neural networks for relational learning , 2003, ICML 2003.

[39]  Luc De Raedt,et al.  Towards Combining Inductive Logic Programming with Bayesian Networks , 2001, ILP.

[40]  Ondrej Kuzelka,et al.  Relational Learning with Polynomials , 2012, 2012 IEEE 24th International Conference on Tools with Artificial Intelligence.

[41]  Mathias Niepert Discriminative Gaifman Models , 2016, NIPS.

[42]  Luc De Raedt,et al.  ProbLog: A Probabilistic Prolog and its Application in Link Discovery , 2007, IJCAI.

[43]  Lei Xu,et al.  Input Convex Neural Networks : Supplementary Material , 2017 .

[44]  Lise Getoor,et al.  Lifted graphical models: a survey , 2011, Machine Learning.

[45]  Luc De Raedt,et al.  kFOIL: Learning Simple Relational Kernels , 2006, AAAI.

[46]  Tim Rocktäschel,et al.  Learning Knowledge Base Inference with Neural Theorem Provers , 2016, AKBC@NAACL-HLT.

[47]  Luís Moniz Pereira,et al.  Antitonic Logic Programs , 2001, LPNMR.

[48]  H. Gaifman On Local and Non-Local Properties , 1982 .

[49]  Steven Schockaert,et al.  Learning Predictive Categories Using Lifted Relational Neural Networks , 2016, ILP.

[50]  J. Lloyd Foundations of Logic Programming , 1984, Symbolic Computation.