Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces

The thermal decomposition pathway of an ultrathin oxide layer on Ge(100) and Si(100) surfaces is examined by synchrotron radiation photoelectron spectroscopy and ultraviolet photoelectron spectroscopy with helium I radiation. The as-prepared oxide layer consists of a mixture of oxides, namely, suboxides and dioxides, on both the surfaces. Upon annealing, the oxide layers decompose and desorb as monoxides. However, we find that the decomposition pathways are different from each other. On annealing Ge oxides, GeO2 species transform to GeO and remain on the surface and desorb at >420 °C. In contrast, annealing of Si oxides results in the transformation of SiO to SiO2 up to temperatures (∼780 °C) close to the desorption. At higher temperatures, SiO2 decomposes and desorbs, implying a reverse transformation to volatile SiO species.

[1]  M. Tikhov,et al.  Oxygen adsorption on a Ge(100) surface: I. Clean surfaces , 1982 .

[2]  Yoshio Watanabe,et al.  Bonding partner change reaction in oxidation of Ge on Si(001): Observation of two step formation of SiO2 , 1994 .

[3]  Toshio Ogino,et al.  Oxidation of Ge(100) and Ge(111) surfaces: an UPS and XPS study , 1995 .

[4]  Yoshihiro Kobayashi,et al.  In situ oxidation of a thin layer of Ge on Si(001): Observation of GeO to SiO2 transition , 1993 .

[5]  R. D. Schnell,et al.  Surface oxidation states of germanium , 1986 .

[6]  J. Bean,et al.  An efficient method for cleaning Ge(100) surface , 1994 .

[7]  Lutz,et al.  Substrate temperature dependence of the initial growth mode of SiO2 on Si(100)-(2 x 1) exposed to O2: A photoemission study. , 1989, Physical review. B, Condensed matter.

[8]  S. Pantelides,et al.  Electronic structure, spectra, and properties of 4:2-coordinated materials. I. Crystalline and amorphousSiO2andGeO2 , 1976 .

[9]  D. Hansen,et al.  The adsorption kinetics of molecular oxygen and the desorption kinetics of GeO on Ge( 100) , 1993 .

[10]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[11]  Yoshihiro Kobayashi,et al.  Thermal clustering of very thin oxide formed on Si surfaces by N2OO2 adsorption , 1995 .

[12]  F. J. Grunthaner,et al.  Chemical and electronic structure of the SiO2/Si interface , 1987 .

[13]  Heiji Watanabe,et al.  Thermal decomposition of ultrathin oxide layers on Si(111) surfaces mediated by surface Si transport , 1997 .

[14]  Michael Liehr,et al.  Kinetics of high-temperature thermal decomposition of SiO2 on Si(100) , 1987 .

[15]  Yoshio Watanabe,et al.  A VUV beamline (ABL-3B) for real-time photoelectron spectroscopy at the NTT synchrotron radiation facility , 1994 .

[16]  Chiang,et al.  Initial stage of thermal oxidation of the Si(111)-(7 x 7) surface. , 1986, Physical review. B, Condensed matter.