Effects of LaB6 on composition, microstructure and ablation property of the HfC-TaC-SiC doped C/C composites prepared by precursor infiltration and pyrolysis

[1]  K. He,et al.  Effects of LaB6 on the microstructures and ablation properties of 3D C/C-SiC-ZrB2-LaB6 composites , 2020 .

[2]  Qizhong Huang,et al.  Fabrication and performance of micro-diamond modified C/SiC composites via precursor impregnation and pyrolysis process , 2018, Ceramics International.

[3]  Hejun Li,et al.  Effect of LaB6 content on the gas evolution and structure of ZrC coating for carbon/carbon composites during ablation , 2017 .

[4]  Hejun Li,et al.  A ZrC-SiC/ZrC-LaB6/ZrC multilayer ablation resistance coating for SiC-coated carbon/carbon composites , 2017 .

[5]  Marie-Aline Van Ende,et al.  FactSage thermochemical software and databases, 2010–2016 , 2016 .

[6]  Liping Wang,et al.  Ablation mechanism of C/C–ZrB2–ZrC–SiC composite fabricated by polymer infiltration and pyrolysis with preform of Cf/ZrB2 , 2015 .

[7]  Qizhong Huang,et al.  Microstructure and ablation behavior of C/C–HfC composites prepared by precursor infiltration and pyrolysis , 2015 .

[8]  Ai Shigang,et al.  A Numerical Study on the Thermal Conductivity of 3D Woven C/C Composites at High Temperature , 2015, Applied Composite Materials.

[9]  Hui‐Ming Cheng,et al.  Ablation and mechanical behavior of a sandwich-structured composite with an inner layer of Cf/SiC between two outer layers of Cf/SiC–ZrB2–ZrC , 2014 .

[10]  Qizhong Huang,et al.  Microstructure and ablation behavior of SiC coated C/C–SiC–ZrC composites prepared by a hybrid infiltration process , 2013 .

[11]  H. Hu,et al.  Mechanism of ablation of 3D C/ZrC–SiC composite under an oxyacetylene flame , 2013 .

[12]  William E Lee,et al.  In situ Formation of Oxidation Resistant Refractory Coatings on SiC‐Reinforced ZrB2 Ultra High Temperature Ceramics , 2012 .

[13]  Hejun Li,et al.  Influence of SiC nanowires on the properties of SiC coating for C/C composites between room temperature and 1500 °C , 2011 .

[14]  Xu Yongdong,et al.  Effects of TaC addition on the ablation resistance of C/SiC , 2010 .

[15]  Jiecai Han,et al.  Effect of Various Additives on the Oxidation Behavior of ZrB2‐Based Ultra‐High‐Temperature Ceramics at 1800°C , 2010 .

[16]  Jingyi Deng,et al.  Comparison of thermal and ablation behaviors of C/SiC composites and C/ZrB2–SiC composites , 2009 .

[17]  A. Navrotsky,et al.  Energetics of La2O3-HfO2-SiO2 Glasses , 2008 .

[18]  Jiecai Han,et al.  The addition of lanthanum hexaboride to zirconium diboride for improved oxidation resistance , 2007 .

[19]  Andreas Mack,et al.  Aerothermodynamic behaviour of a generic nosecap model including thermomechanical structural effects , 2007 .

[20]  W. Krenkel,et al.  C/C–SiC composites for space applications and advanced friction systems , 2005 .

[21]  M. Yoshimura,et al.  Formation and Stability Regions of the High‐Temperature Fluorite‐Related Phase in the R2O3‐Ta2O5 System (R = La, Nd, Sm, Ho, Er, and Yb) , 2005 .

[22]  R. Day,et al.  Conversion of polycarbosilane (PCS) to SiC-based ceramic Part II Pyrolysis and characterisation , 2001 .

[23]  G. Borchardt,et al.  Mullite Based Oxidation Protection for SiC-C/C Composites in Air at Temperatures up to 1900 K , 1997 .

[24]  J. S. Lee,et al.  Coatings with particulate dispersions for high temperature oxidation protection of carbon and C/C composites , 1997 .