Investigation of the Equivalent Representation Form of Strongly Damped Nonlinear Oscillators by a Nonlinear Transformation Approach

We use a nonlinear transformation method to develop equivalent equations of motion of nonlinear homogeneous oscillatory systems with linear and nonlinear odd damping terms. We illustrate the applicability of our approach by using the equations of motion that arise in many engineering problems and compare their amplitude-time curves with those obtained by the numerical integration solutions of the original equations of motion.

[1]  K. Chow,et al.  Exact solutions for oscillators with quadratic damping and mixed-parity nonlinearity , 2012 .

[2]  J. A. Tenreiro Machado,et al.  Describing Function Analysis of Systems with Impacts and Backlash , 2002 .

[3]  Jianping Cai,et al.  An equivalent nonlinearization method for strongly nonlinear oscillations , 2005 .

[4]  Augusto Beléndez,et al.  An accurate closed-form approximate solution for the quintic Duffing oscillator equation , 2010, Math. Comput. Model..

[5]  H. Hatwal,et al.  ON THE MODELLING OF NON-LINEAR ELASTOMERIC VIBRATION ISOLATORS , 1999 .

[6]  Jia-yang Gu NONLINEAR ROLLING MOTION OF SHIP IN RANDOM BEAM SEAS , 2004 .

[7]  M. Taylan,et al.  The effect of nonlinear damping and restoring in ship rolling , 2000 .

[8]  Augusto Beléndez,et al.  An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method , 2009 .

[9]  D. Delignières,et al.  Effects of practice and task constraints on stiffness and friction functions in biological movements , 1999 .

[10]  Baisheng Wu,et al.  Construction of approximate analytical solutions to strongly nonlinear damped oscillators , 2011 .

[11]  Q. Cao,et al.  Dynamic analysis of a two degree of freedom system with irrational nonlinearity , 2011 .

[12]  S. K. Lai,et al.  Application of a generalized Senator-Bapat perturbation technique to nonlinear dynamical systems with an irrational restoring force , 2010, Comput. Math. Appl..

[13]  Angelo Marcello Tarantino,et al.  Homoclinic and heteroclinic bifurcations in the non-linear dynamics of a beam resting on an elastic substrate , 1999 .

[14]  S. A. Billings,et al.  The benefits of nonlinear cubic viscous damping on the force transmissibility of a Duffing-type vibration isolator , 2012, Proceedings of 2012 UKACC International Conference on Control.

[15]  A. Elías-Zúñiga,et al.  Approximate Solution for the Duffing-Harmonic Oscillator by the Enhanced Cubication Method , 2012 .

[16]  Grzegorz Litak,et al.  Vibration of generalized double well oscillators , 2006, nlin/0610052.

[17]  Miguel A. F. Sanjuán,et al.  Analytical Estimates of the Effect of nonlinear damping in some nonlinear oscillators , 2000, Int. J. Bifurc. Chaos.

[18]  Eyal Buks,et al.  Nonlinear dynamics in nanomechanical oscillators , 2005, 2005 International Conference on MEMS,NANO and Smart Systems.

[19]  O. Gottlieb,et al.  Nonlinear damping in a micromechanical oscillator , 2009, 0911.0833.

[20]  A. Maimistov,et al.  Propagation of an ultimately short electromagnetic pulse in a nonlinear medium described by the fifth-order Duffing model , 2003 .

[21]  Usama H. Hegazy,et al.  Homoclinic bifurcation and chaos control in MEMS resonators , 2011 .

[22]  A. Elías-Zúñiga,et al.  Accurate Solutions of Conservative Nonlinear Oscillators by the Enhanced Cubication Method , 2013 .

[23]  Zhaosheng Feng,et al.  First integrals for the damped Helmholtz oscillator , 2010, Int. J. Comput. Math..

[24]  H. Sedighi,et al.  An analytic solution of transversal oscillation of quintic non-linear beam with homotopy analysis method , 2012 .

[25]  Inmaculada Pascual,et al.  Cubication of conservative nonlinear oscillators , 2009 .