Local and Global Testing of Linear and Nonlinear Inequality Constraints in Nonlinear Econometric Models

This paper considers a general nonlinear econometric model framework that contains a large class of estimators defined as solutions to optimization problems. For this framework we derive several asymptotically equivalent forms of a test statistic for the local (in a way made precise in the paper) multivariate nonlinear inequality constraints test H : h (β) ≥ 0 versus K : β null R . We extend these results to consider local hypotheses tests of the form H : h 1 (β) ≥ 0 and h 2 (β) = 0 versus K : β null R . For each test we derive the asymptotic distribution for any size test as a weighted sum of χ 2 -distributions. We contrast local as opposed to global inequality constraints testing and give conditions on the model and constraints when each is possible. This paper also extends the well-known duality results in testing multivariate equality constraints to the case of nonlinear multivariate inequality constraints and combinations of nonlinear inequality and equality constraints.

[1]  Jean-Marie Dufour,et al.  Nonlinear hypotheses, inequality restrictions, and non-nested hypotheses: exact simultaneous tests in linear regressions , 1989 .

[2]  William A. Barnett,et al.  New Indices of Money Supply and the Flexible Laurent Demand System , 1983 .

[3]  Thomas J. Rothenberg,et al.  Efficient estimation with a priori information , 1974 .

[4]  A. Wald Tests of statistical hypotheses concerning several parameters when the number of observations is large , 1943 .

[5]  T. Stroud On Obtaining Large-Sample Tests from Asymptotically Normal Estimators , 1971 .

[6]  J. Aitchison,et al.  Maximum-Likelihood Estimation of Parameters Subject to Restraints , 1958 .

[7]  S. D. Silvey,et al.  The Lagrangian Multiplier Test , 1959 .

[8]  D. McFadden,et al.  Production Economics: A Dual Approach to Theory and Applications (I): The Theory of Production , 1978 .

[9]  Alan J. Rogers Modified lagrange multiplier tests for problems with one-sided alternatives , 1986 .

[10]  H. D. Brunk,et al.  Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .

[11]  D. J. Bartholomew,et al.  A TEST OF HOMOGENEITY FOR ORDERED ALTERNATIVES. II , 1959 .

[12]  W. Diewert,et al.  Flexible Functional Forms and Global Curvature Conditions , 1989 .

[13]  A. Gallant,et al.  Nonlinear Statistical Models , 1988 .

[14]  Gene H. Golub,et al.  Imposing curvature restrictions on flexible functional forms , 1984 .

[15]  H. Chernoff On the Distribution of the Likelihood Ratio , 1954 .

[16]  A. Kudô,et al.  A multivariate analogue of the one-sided test , 1963 .

[17]  William A. Barnett,et al.  The three-dimensional global properties of the minflex laurent, generalized leontief, and translog flexible functional forms , 1985 .

[18]  T. W. F. Stroud,et al.  Fixed Alternatives and Wald's Formulation of the Noncentral Asymptotic Behavior of the Likelihood Ratio Statistic , 1972 .

[19]  Michael D. Perlman,et al.  One-Sided Testing Problems in Multivariate Analysis , 1969 .

[20]  Franz C. Palm,et al.  Wald Criteria for Jointly Testing Equality and Inequality , 1986 .

[21]  Mordecai Avriel,et al.  Nonlinear programming , 1976 .

[22]  William A. Barnett,et al.  The Global Properties of the Miniflex Laurent, Generalized Leontief, and Translog Flexible Functional Forms , 1985 .

[23]  H. Theil Principles of econometrics , 1971 .

[24]  C. Gouriéroux,et al.  Kuhn-Tucker, likelihood ratio and Wald tests for nonlinear models with inequality constraints on the parameters , 1981 .

[25]  D. Hendry The structure of simultaneous equations estimators , 1976 .

[26]  F. Wolak Testing inequality constraints in linear econometric models , 1989 .

[27]  R. Farebrother Testing linear inequality constraints in the standard linear model , 1986 .

[28]  G. Hillier Joint tests for zero restrictions on nonnegative regression coefficients , 1986 .

[29]  Dale W. Jorgenson,et al.  The Transcendental Logarithmic Model of Aggregate Consumer Behavior , 1982 .

[30]  F. Wolak Duality in testing multivariate hypotheses , 1988 .

[31]  Peter E. Nuesch,et al.  ON THE PROBLEM OF TESTING LOCATION IN MULTIVARIATE POPULATIONS FOR RESTRICTED ALTERNATIVES , 1966 .

[32]  C. Gouriéroux,et al.  Likelihood Ratio Test, Wald Test, and Kuhn-Tucker Test in Linear Models with Inequality Constraints on the Regression Parameters , 1982 .

[33]  H. White,et al.  NONLINEAR REGRESSION ON CROSS-SECTION DATA , 1980 .

[34]  Philip E. Gill,et al.  Practical optimization , 1981 .

[35]  R. Varga,et al.  Proof of Theorem 4 , 1983 .

[36]  A. Gallant,et al.  Unbiased determination of production technologies , 1982 .

[37]  D. J. Bartholomew,et al.  A Test of Homogeneity of Means Under Restricted Alternatives , 1961 .

[38]  James R. Lackritz Exact p Values for F and t Tests , 1984 .

[39]  A. Gallant,et al.  On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form , 1981 .

[40]  Paul I. Feder,et al.  On the Distribution of the Log Likelihood Ratio Test Statistic When the True Parameter is "Near" the Boundaries of the Hypothesis Regions , 1968 .

[41]  A. Ronald Gallant,et al.  On unification of the asymptotic theory of nonlinear econometric models , 1982 .