Probabilistic matching of image- to model-features for real-time object tracking

Background clutter produces a difficult problem for edge matching within model-based object tracking approaches. The solution of matching all possible candidate image features with the model features is computationally infeasible for real-time tracking. The authors propose to draw probabilistic samples of candidate sets based on measures for local topological constraints. Line features have parallel and junction constraints. Continuous measures are used for evaluation of matching of the feature sets to avoid thresholds. This approach limits the number of matchings and processing time increases linearly with the number of features. Experiments show the correct selection among multiple candidates for different scenarios.

[1]  William Grimson,et al.  Object recognition by computer - the role of geometric constraints , 1991 .

[2]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[3]  Edward M. Riseman,et al.  How Easy is Matching 2D Line Models Using Local Search? , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  David A. Forsyth,et al.  3D Object Recognition Using Invariance , 1995, Artif. Intell..

[5]  Gregory D. Hager,et al.  X Vision: A Portable Substrate for Real-Time Vision Applications , 1998, Comput. Vis. Image Underst..

[6]  Seth Hutchinson,et al.  Real-time vision, tracking and control , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[7]  David G. Lowe,et al.  Indexing without Invariants in 3D Object Recognition , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  James L. Crowley,et al.  Measurement and integration of 3-D structures by tracking edge lines , 1990, International Journal of Computer Vision.

[9]  Avinash C. Kak,et al.  Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing , 1998, IEEE Trans. Robotics Autom..

[10]  Hans-Hellmut Nagel,et al.  Model-Based Stereo-Tracking of Non-Polyhedral Objects for Automatic Disassembly Experiments , 2000, International Journal of Computer Vision.

[11]  Gerd Hirzinger,et al.  Flexible robot-assembly using a multi-sensory approach , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[12]  G. Medioni,et al.  Grouping . ,-, → ,-, into regions , curves , and junctions , 1999 .

[13]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[14]  David G. Lowe,et al.  Robust model-based motion tracking through the integration of search and estimation , 1992, International Journal of Computer Vision.

[15]  Chris Harris,et al.  Tracking with rigid models , 1993 .

[16]  Ian D. Reid,et al.  Providing synthetic views for teleoperation using visual pose tracking in multiple cameras , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[17]  Mi-Suen Lee,et al.  Grouping ., -, ->, [formula], into Regions, Curves, and Junctions , 1999, Comput. Vis. Image Underst..

[18]  Wolfgang Ponweiser,et al.  Edge-Projected Integration of Image and Model Cues for Robust Model-Based Object Tracking , 2001, Int. J. Robotics Res..