Statistical Mechanics: A Tale of Two Theories
暂无分享,去创建一个
[1] F. Dizadji-Bahmani. The Aharonov Approach to Equilibrium , 2011, Philosophy of Science.
[2] Christopher Hitchcock,et al. The Oxford Handbook of Probability and Philosophy , 2016 .
[3] R. Tolman,et al. The Principles of Statistical Mechanics. By R. C. Tolman. Pp. xix, 661. 40s. 1938. International series of monographs on physics. (Oxford) , 1939, The Mathematical Gazette.
[4] D. Chandler,et al. Introduction To Modern Statistical Mechanics , 1987 .
[5] S. Zabell,et al. Why Gibbs Phase Averages Work--The Role of Ergodic Theory , 1980, Philosophy of Science.
[6] J. Gibbs. Elementary Principles in Statistical Mechanics , 1902 .
[7] R. Frigg,et al. Reconceptualising equilibrium in Boltzmannian statistical mechanics and characterising its existence , 2015, 1510.02260.
[8] R. Lindsay,et al. The Conceptual Foundations of the Statistical Approach in Mechanics , 1959 .
[9] Jos Uffink,et al. The constraint rule of the maximum entropy principle , 1996 .
[10] Dean Rickles,et al. The Ashgate companion to contemporary philosophy of physics , 2016 .
[11] P. B. Vranas. Epsilon-Ergodicity and the Success of Equilibrium Statistical Mechanics , 1998, Philosophy of Science.
[12] Jozef B Uffink. Compendium of the Foundations of Classical Statistical Physics , 2007 .
[13] Boltzmann and Gibbs: An attempted reconciliation , 2004, cond-mat/0401061.
[14] R. Frigg. A Field Guide to Recent Work on the Foundations of Statistical Mechanics. , 2008, 0804.0399.
[15] A. Hüttemann,et al. Time, Chance and Reduction: Philosophical Aspects of Statistical Mechanics , 2010 .
[16] Mario Bunge,et al. Philosophy of Physics , 1972 .
[17] K. Davey. What Is Gibbs’s Canonical Distribution? , 2009, Philosophy of Science.
[18] C. Werndl,et al. Ehrenfest and Ehrenfest-Afanassjewa on Why Boltzmannian and Gibbsian Calculations Agree , 2020, Women in the History of Philosophy and Sciences.
[19] J. Salz,et al. Noise and fluctuations: An introduction , 1963 .
[20] Debra J Searles,et al. Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. , 2002, Physical review letters.
[21] R. Baxter. Exactly solved models in statistical mechanics , 1982 .
[22] Jos Uunk,et al. Can the Maximum Entropy Principle Be Explained as a Consistency Requirement? , 1997 .
[23] F. G. KENYON,et al. Time and Chance , 1943, Nature.
[24] P. Rysselberghe. Mathematical foundations of statistical mechanics. , 1949 .
[25] Roman Frigg,et al. Can Somebody Please Say What Gibbsian Statistical Mechanics Says? , 2018, The British Journal for the Philosophy of Science.
[26] Lawrence Sklar,et al. Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics , 1993 .
[27] S. Hartmann. Effective field theories, reductionism and scientific explanation , 2001 .
[28] W. Myrvold. Probabilities in Statistical Mechanics , 2014, Beyond Chance and Credence.
[29] R. Frigg,et al. Probability in Boltzmannian Statistical Mechanics , 2007 .
[30] Friedrich Hasenöhrl,et al. Wissenschaftliche Abhandlungen: Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung resp. den Sätzen über das Wärmegleichgewicht , 2012 .
[31] Srikanth Sastry,et al. Physics and chance. Philosophical issues in the foundations of statistical mechanics , 1995 .
[32] Jos Uffink,et al. Can the maximum entropy principle be explained as a consistency requirement , 1995 .
[33] D. Wallace. The quantitative content of statistical mechanics , 2015 .