Statistical Mechanics: A Tale of Two Theories

There are two theoretical approaches in statistical mechanics, one associated with Boltzmann and the other with Gibbs. The theoretical apparatus of the two approaches offer distinct descriptions of the same physical system with no obvious way to translate the concepts of one formalism into those of the other. This raises the question of the status of one approach vis-a-vis the other. We answer this question by arguing that the Boltzmannian approach is a fundamental theory while Gibbsian statistical mechanics (GSM) is an effective theory, and we describe circumstances under which Gibbsian calculations coincide with the Boltzmannian results. We then point out that regarding GSM as an effective theory has important repercussions for a number of projects, in particular attempts to turn GSM into a nonequilibrium theory.

[1]  F. Dizadji-Bahmani The Aharonov Approach to Equilibrium , 2011, Philosophy of Science.

[2]  Christopher Hitchcock,et al.  The Oxford Handbook of Probability and Philosophy , 2016 .

[3]  R. Tolman,et al.  The Principles of Statistical Mechanics. By R. C. Tolman. Pp. xix, 661. 40s. 1938. International series of monographs on physics. (Oxford) , 1939, The Mathematical Gazette.

[4]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[5]  S. Zabell,et al.  Why Gibbs Phase Averages Work--The Role of Ergodic Theory , 1980, Philosophy of Science.

[6]  J. Gibbs Elementary Principles in Statistical Mechanics , 1902 .

[7]  R. Frigg,et al.  Reconceptualising equilibrium in Boltzmannian statistical mechanics and characterising its existence , 2015, 1510.02260.

[8]  R. Lindsay,et al.  The Conceptual Foundations of the Statistical Approach in Mechanics , 1959 .

[9]  Jos Uffink,et al.  The constraint rule of the maximum entropy principle , 1996 .

[10]  Dean Rickles,et al.  The Ashgate companion to contemporary philosophy of physics , 2016 .

[11]  P. B. Vranas Epsilon-Ergodicity and the Success of Equilibrium Statistical Mechanics , 1998, Philosophy of Science.

[12]  Jozef B Uffink Compendium of the Foundations of Classical Statistical Physics , 2007 .

[13]  Boltzmann and Gibbs: An attempted reconciliation , 2004, cond-mat/0401061.

[14]  R. Frigg A Field Guide to Recent Work on the Foundations of Statistical Mechanics. , 2008, 0804.0399.

[15]  A. Hüttemann,et al.  Time, Chance and Reduction: Philosophical Aspects of Statistical Mechanics , 2010 .

[16]  Mario Bunge,et al.  Philosophy of Physics , 1972 .

[17]  K. Davey What Is Gibbs’s Canonical Distribution? , 2009, Philosophy of Science.

[18]  C. Werndl,et al.  Ehrenfest and Ehrenfest-Afanassjewa on Why Boltzmannian and Gibbsian Calculations Agree , 2020, Women in the History of Philosophy and Sciences.

[19]  J. Salz,et al.  Noise and fluctuations: An introduction , 1963 .

[20]  Debra J Searles,et al.  Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. , 2002, Physical review letters.

[21]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[22]  Jos Uunk,et al.  Can the Maximum Entropy Principle Be Explained as a Consistency Requirement? , 1997 .

[23]  F. G. KENYON,et al.  Time and Chance , 1943, Nature.

[24]  P. Rysselberghe Mathematical foundations of statistical mechanics. , 1949 .

[25]  Roman Frigg,et al.  Can Somebody Please Say What Gibbsian Statistical Mechanics Says? , 2018, The British Journal for the Philosophy of Science.

[26]  Lawrence Sklar,et al.  Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics , 1993 .

[27]  S. Hartmann Effective field theories, reductionism and scientific explanation , 2001 .

[28]  W. Myrvold Probabilities in Statistical Mechanics , 2014, Beyond Chance and Credence.

[29]  R. Frigg,et al.  Probability in Boltzmannian Statistical Mechanics , 2007 .

[30]  Friedrich Hasenöhrl,et al.  Wissenschaftliche Abhandlungen: Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung resp. den Sätzen über das Wärmegleichgewicht , 2012 .

[31]  Srikanth Sastry,et al.  Physics and chance. Philosophical issues in the foundations of statistical mechanics , 1995 .

[32]  Jos Uffink,et al.  Can the maximum entropy principle be explained as a consistency requirement , 1995 .

[33]  D. Wallace The quantitative content of statistical mechanics , 2015 .