Development and validation of proton track-structure model applicable to arbitrary materials

[1]  K. Sasaki,et al.  Verification of KURBUC-based ion track structure mode for proton and carbon ions in the PHITS code , 2021, Physics in medicine and biology.

[2]  T. Kai,et al.  Depth profiles of energy deposition near incident surface irradiated with swift heavy ions , 2019 .

[3]  H. Date,et al.  Modeling of yield estimation for DNA strand breaks based on Monte Carlo simulations of electron track structure in liquid water , 2019, Journal of Applied Physics.

[4]  P. Mégret,et al.  MICRODOSIMETRIC MODELING OF THE RELATIVE LUMINESCENCE EFFICIENCY OF LiF:Mg,Cu,P (MCP) DETECTORS EXPOSED TO CHARGED PARTICLES. , 2019, Radiation protection dosimetry.

[5]  T. Yamaki,et al.  Analysis of scintillation light intensity by microscopic radiation transport calculation and Förster quenching model , 2018, PloS one.

[6]  Takuya Furuta,et al.  Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02 , 2018 .

[7]  M. L. Bouhssa,et al.  Method for range calculation based on empirical models of proton in liquid water: Validation study using Monte-Carlo method and ICRU data. , 2017 .

[8]  E. Bezak,et al.  Review of Geant4-DNA applications for micro and nanoscale simulations. , 2016, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics.

[9]  T. Sato,et al.  Measurement of the stochastic radial dose distribution for a 30-MeV proton beam using a wall-less tissue-equivalent proportional counter. , 2015, Radiation protection dosimetry.

[10]  K. Fujii,et al.  Thermal equilibrium and prehydration processes of electrons injected into liquid water calculated by dynamic Monte Carlo method , 2015 .

[11]  S. Incerti,et al.  Modeling proton and alpha elastic scattering in liquid water in Geant4-DNA , 2015 .

[12]  P. Barberet,et al.  Simulating radial dose of ion tracks in liquid water simulated with Geant4-DNA: A comparative study , 2014 .

[13]  V. Vlachoudis,et al.  The FLUKA Code: Developments and Challenges for High Energy and Medical Applications , 2014 .

[14]  Armin Lühr,et al.  SHIELD-HIT12A - a Monte Carlo particle transport program for ion therapy research , 2014 .

[15]  J. Fernández-Varea,et al.  Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale. , 2013, Medical physics.

[16]  John S. Hendricks,et al.  Initial MCNP6 Release Overview , 2012 .

[17]  M. Dingfelder Track-structure simulations for charged particles. , 2012, Health physics.

[18]  P. Paillet,et al.  Geant4 physics processes for microdosimetry simulation: Very low energy electromagnetic models for electrons in silicon , 2012 .

[19]  P. Colautti,et al.  Track structure of light ions: experiments and simulations , 2012 .

[20]  A. Lühr,et al.  Optimizing SHIELD-HIT for carbon ion treatment , 2012, Physics in medicine and biology.

[21]  B. Lind,et al.  Limitations (and merits) of PENELOPE as a track-structure code , 2012, International journal of radiation biology.

[22]  B. Lind,et al.  A Monte Carlo program for the analysis of low-energy electron tracks in liquid water , 2011, Physics in medicine and biology.

[23]  Ianik Plante,et al.  Monte-Carlo Simulation of Ionizing Radiation Tracks , 2011 .

[24]  T. Liamsuwan,et al.  Physical and biophysical properties of proton tracks of energies 1 keV to 300 MeV in water , 2011, International journal of radiation biology.

[25]  Y. Namito,et al.  Analysis of the effect of structural materials in a wall-less tissue-equivalent proportional counter irradiated by 290 MeV u(-1) carbon beam. , 2011, Radiation protection dosimetry.

[26]  Frank Moss,et al.  Experiments and simulations , 2009 .

[27]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[28]  Masaya Nagai,et al.  Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy , 2008 .

[29]  Ritsuko Watanabe,et al.  Can Monte Carlo track structure codes reveal reaction mechanism in DNA damage and improve radiation therapy , 2008 .

[30]  M. Scholz,et al.  Impact of track structure calculations on biological treatment planning in ion radiotherapy , 2008 .

[31]  W. Hajdas,et al.  Optically stimulated luminescence from Al2O3:C irradiated with 10-60 MeV protons , 2007 .

[32]  S. Greilich,et al.  A track structure model of optically stimulated luminescence from Al2O3:C irradiated with 10–60 MeV protons , 2007 .

[33]  D. Emfietzoglou,et al.  Proton beam profiling in soft biological matter by detailed Monte Carlo simulation , 2006 .

[34]  Yoshihito Namito,et al.  The EGS5 code system , 2005 .

[35]  A. Ferrari,et al.  FLUKA: A Multi-Particle Transport Code , 2005 .

[36]  Dimitris Emfietzoglou,et al.  Ion and electron track-structure and its effects in silicon: model and calculations , 2005 .

[37]  Robert R. Lewis,et al.  Analysis of Low-Energy Electron Track Structure in Liquid Water , 2004, Radiation research.

[38]  C. Trautmann,et al.  Track formation and fabrication of nanostructures with MeV-ion beams , 2004 .

[39]  L. Cirioni,et al.  Accurate transport simulation of electron tracks in the energy range 1 keV-4 MeV , 2004 .

[40]  K. Karava,et al.  Monte Carlo simulation of the energy loss of low-energy electrons in liquid water. , 2003, Physics in medicine and biology.

[41]  Nikolai V. Mokhov,et al.  Status of MARS Code , 2003 .

[42]  Peter Jacob,et al.  Simulation of DNA Damage after Proton Irradiation , 2003, Radiation research.

[43]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[44]  S. Uehara,et al.  Monte Carlo track structure code for low-energy alpha-particles in water , 2002 .

[45]  R. Godbole,et al.  Total cross-sections , 2001, hep-ph/0104015.

[46]  K. Furukawa,et al.  An ion-track structure model based on experimental measurements and its application to calculate radiolysis yields , 2001 .

[47]  M Scholz,et al.  Tumor therapy and track structure , 1999, Radiation and environmental biophysics.

[48]  D. T. Goodhead,et al.  Quantitative modelling of DNA damage using Monte Carlo track structure method , 1999, Radiation and environmental biophysics.

[49]  T. Kusama,et al.  Monte Carlo simulation of physicochemical processes of liquid water radiolysis , 1997 .

[50]  David Liljequist,et al.  Monte Carlo simulation of 0.1–100 keV electron and positron transport in solids using optical data and partial wave methods , 1996 .

[51]  M Scholz,et al.  Track structure and the calculation of biological effects of heavy charged particles. , 1996, Advances in space research : the official journal of the Committee on Space Research.

[52]  H. Paretzke,et al.  Track Structure Approaches to the Interpretation of Radiation Effects on DNA , 1994 .

[53]  Dudley T. Goodhead,et al.  Cross-sections for water vapour for the Monte Carlo electron track structure code from 10 eV to the MeV region , 1993 .

[54]  D. Burmistrov,et al.  “Trion” code for radiation action calculations and its application in microdosimetry and radiobiology , 1993, Radiation and environmental biophysics.

[55]  A. Chatterjee,et al.  Computer simulation of initial events in the biochemical mechanisms of DNA damage. , 1993, Advances in radiation biology.

[56]  Evon M. O. Abu-Taieh,et al.  Comparative Study , 2020, Definitions.

[57]  J. C. Ashley Energy loss rate and inelastic mean free path of low-energy electrons and positrons in condensed matter , 1990 .

[58]  Rudd Differential cross sections for secondary electron production by proton impact. , 1988, Physical review. A, General physics.

[59]  J. Kiefer,et al.  A model of ion track structure based on classical collision dynamics. , 1986, Physics in medicine and biology.

[60]  Rudd,et al.  Angular and energy dependence of cross sections for ejection of electrons from water vapor. II. 15-150-keV proton impact. , 1986, Physical review. A, General physics.

[61]  Robert Katz,et al.  The radial distribution of dose around the path of a heavy ion in liquid water , 1986 .

[62]  D. Dunn,et al.  Radial Distribution of Dose and Cross-Sections for the Inactivation of Dry Enzymes and Viruses , 1985 .

[63]  J. W. Gallagher,et al.  Electron Production in Proton Collisions: Total Cross Sections , 1985 .

[64]  W. E. Wilson,et al.  Differential cross sections for ionization of methane, ammonia, and water vapor by high velocity ions , 1984 .

[65]  James E. Turner,et al.  Physical and Chemical Development of Electron Tracks in Liquid Water , 1983 .

[66]  Marco Zaider,et al.  The Applications of Track Calculations to Radiobiology I. Monte Carlo Simulation of Proton Tracks , 1983 .

[67]  M. E. Rudd,et al.  Differential cross sections for ejection of electrons from helium by protons , 1976 .

[68]  J. W. Baum,et al.  Measured radial distributions of dose and LET for alpha and proton beams in hydrogen and tissue-equivalent gas. , 1976, Radiation research.

[69]  A. Ore,et al.  [Interaction of radiation with matter]. , 1962, Nordisk medicin.