Utility-Friendly Heterogenous Generalization in Privacy Preserving Data Publishing
暂无分享,去创建一个
[1] D. DeWitt,et al. K-Anonymization as Spatial Indexing: Toward Scalable and Incremental Anonymization , 2007, 2007 IEEE 23rd International Conference on Data Engineering.
[2] David J. DeWitt,et al. Workload-aware anonymization , 2006, KDD '06.
[3] David J. DeWitt,et al. Incognito: efficient full-domain K-anonymity , 2005, SIGMOD '05.
[4] Pierangela Samarati,et al. Generalizing Data to Provide Anonymity when Disclosing Information , 1998, PODS 1998.
[5] Philip S. Yu,et al. Top-down specialization for information and privacy preservation , 2005, 21st International Conference on Data Engineering (ICDE'05).
[6] David J. DeWitt,et al. Mondrian Multidimensional K-Anonymity , 2006, 22nd International Conference on Data Engineering (ICDE'06).
[7] Jian Pei,et al. Utility-based anonymization using local recoding , 2006, KDD '06.
[8] Pierangela Samarati,et al. Protecting Respondents' Identities in Microdata Release , 2001, IEEE Trans. Knowl. Data Eng..
[9] Roberto J. Bayardo,et al. Data privacy through optimal k-anonymization , 2005, 21st International Conference on Data Engineering (ICDE'05).
[10] Nikos Mamoulis,et al. Non-homogeneous generalization in privacy preserving data publishing , 2010, SIGMOD Conference.
[11] Tamir Tassa,et al. k-Anonymization Revisited , 2008, 2008 IEEE 24th International Conference on Data Engineering.
[12] Panos Kalnis,et al. Fast Data Anonymization with Low Information Loss , 2007, VLDB.
[13] Latanya Sweeney,et al. k-Anonymity: A Model for Protecting Privacy , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..