First-spike latency of auditory neurons revisited

[1]  D. Anderson,et al.  Sensitivity of single neurons in auditory cortex of cat to binaural tonal stimulation; effects of varying interaural time and intensity. , 1969, Journal of neurophysiology.

[2]  M. M. Gibson,et al.  Initial discharge latency and threshold considerations for some neurons in cochlear nuclear complex of the cat. , 1978, Journal of neurophysiology.

[3]  F. J. Clark,et al.  Microstimulation of single tactile afferents from the human hand. Sensory attributes related to unit type and properties of receptive fields. , 1984, Brain : a journal of neurology.

[4]  D P Phillips,et al.  Effect of tone-pulse rise time on rate-level functions of cat auditory cortex neurons: excitatory and inhibitory processes shaping responses to tone onset. , 1988, Journal of neurophysiology.

[5]  J. L. Hollett,et al.  Repetition rate and signal level effects on neuronal responses to brief tone pulses in cat auditory cortex. , 1989, The Journal of the Acoustical Society of America.

[6]  D. P. Phillips Neural representation of sound amplitude in the auditory cortex: effects of noise masking , 1990, Behavioural Brain Research.

[7]  J. H. Casseday,et al.  The monaural nuclei of the lateral lemniscus in an echolocating bat: parallel pathways for analyzing temporal features of sound , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  D. P. Phillips,et al.  Separate mechanisms control spike numbers and inter-spike intervals in transient responses of cat auditory cortex neurons , 1991, Hearing Research.

[9]  Temporal processing in the dorsal medullary nucleus of the Northern leopard frog (Rana pipiens pipiens). , 1991, Journal of neurophysiology.

[10]  J. H. Casseday,et al.  Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. , 1994, Science.

[11]  Michael B. Calford,et al.  Monaural inhibition in cat auditory cortex. , 1995, Journal of neurophysiology.

[12]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[13]  J. J. Hopfield,et al.  Pattern recognition computation using action potential timing for stimulus representation , 1995, Nature.

[14]  B. Richmond,et al.  Latency: another potential code for feature binding in striate cortex. , 1996, Journal of neurophysiology.

[15]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[16]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[17]  John F. Brugge,et al.  The Structure of Spatial Receptive Fields of Neurons in Primary Auditory Cortex of the Cat , 1996, The Journal of Neuroscience.

[18]  D. Irvine,et al.  On determinants of first‐spike latency in auditory cortex , 1996, Neuroreport.

[19]  D. Irvine,et al.  First-spike timing of auditory-nerve fibers and comparison with auditory cortex. , 1997, Journal of neurophysiology.

[20]  J. H. Casseday,et al.  Neural tuning to sound duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. , 1997, Journal of neurophysiology.

[21]  P. Heil,et al.  Auditory cortical onset responses revisited. II. Response strength. , 1997, Journal of neurophysiology.

[22]  C. Schreiner,et al.  Time course of forward masking tuning curves in cat primary auditory cortex. , 1997, Journal of neurophysiology.

[23]  P. Heil,et al.  Auditory cortical onset responses revisited. I. First-spike timing. , 1997, Journal of neurophysiology.

[24]  M. L. Sutter,et al.  Functional topography of cat primary auditory cortex: response latencies , 1997, Journal of Comparative Physiology A.

[25]  N. Suga,et al.  The inferior colliculus of the mustached bat has the frequency-vs-latency coordinates , 1997, Journal of Comparative Physiology A.

[26]  J J Eggermont Azimuth coding in primary auditory cortex of the cat. II. Relative latency and interspike interval representation. , 1998, Journal of neurophysiology.

[27]  D. Irvine,et al.  The posterior field P of cat auditory cortex: coding of envelope transients. , 1998, Cerebral cortex.

[28]  E. Vaadia,et al.  Spatiotemporal structure of cortical activity: properties and behavioral relevance. , 1998, Journal of neurophysiology.

[29]  P. Heil Neuronal coding of interaural transient envelope disparities , 1998, The European journal of neuroscience.

[30]  P. Heil,et al.  Parallels between timing of onset responses of single neurons in cat and of evoked magnetic fields in human auditory cortex. , 2000, Journal of neurophysiology.

[31]  Walter J. Freeman,et al.  Neurodynamics: An Exploration in Mesoscopic Brain Dynamics , 2000, Perspectives in Neural Computing.

[32]  B. Grothe,et al.  Latency as a function of intensity in auditory neurons: influences of central processing , 2000, Hearing Research.

[33]  M. Diamond,et al.  The Role of Spike Timing in the Coding of Stimulus Location in Rat Somatosensory Cortex , 2001, Neuron.

[34]  D. Irvine,et al.  Mechanisms underlying the sensitivity of neurons in the lateral superior olive to interaural intensity differences. , 2001, Journal of neurophysiology.

[35]  P. Heil,et al.  Temporal Integration of Sound Pressure Determines Thresholds of Auditory-Nerve Fibers , 2001, The Journal of Neuroscience.

[36]  A S Feng,et al.  Oscillation May Play a Role in Time Domain Central Auditory Processing , 2001, The Journal of Neuroscience.

[37]  Rick L. Jenison,et al.  Decoding first-spike latency: A likelihood approach , 2001, Neurocomputing.

[38]  William Bialek,et al.  Spike timing and the coding of naturalistic sounds in a central auditory area of songbirds , 2001, NIPS.

[39]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[40]  A Fishbach,et al.  Auditory edge detection: a neural model for physiological and psychoacoustical responses to amplitude transients. , 2001, Journal of neurophysiology.

[41]  Laurence O Trussell,et al.  Modulation of transmitter release at giant synapses of the auditory system , 2002, Current Opinion in Neurobiology.

[42]  Alan R Palmer,et al.  Phase-locked responses to pure tones in the primary auditory cortex , 2002, Hearing Research.

[43]  J. C. Middlebrooks,et al.  Cortical representation of auditory space: information-bearing features of spike patterns. , 2002, Journal of neurophysiology.

[44]  D. P. Phillips,et al.  Central auditory onset responses, and temporal asymmetries in auditory perception , 2002, Hearing Research.

[45]  V. Torre,et al.  Highly Variable Spike Trains Underlie Reproducible Sensorimotor Responses in the Medicinal Leech , 2002, The Journal of Neuroscience.

[46]  M. Diamond,et al.  Population coding in somatosensory cortex , 2002, Current Opinion in Neurobiology.

[47]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[48]  M. Ferragamo,et al.  Octopus cells of the mammalian ventral cochlear nucleus sense the rate of depolarization. , 2002, Journal of neurophysiology.

[49]  J. Eggermont,et al.  The Neurophysiology of Auditory Perception: From Single Units to Evoked Potentials , 2002, Audiology and Neurotology.

[50]  B. Grothe,et al.  Precise inhibition is essential for microsecond interaural time difference coding , 2002, Nature.

[51]  Jufang He OFF responses in the auditory thalamus of the guinea pig. , 2002, Journal of neurophysiology.

[52]  G. Pollak Neurobiology: Model hearing , 2002, Nature.

[53]  Jim C. Hall,et al.  Inhibition Has Little Effect on Response Latencies in the Inferior Colliculus , 2003, Journal of the Association for Research in Otolaryngology.

[54]  Matthew C Wiener,et al.  Decoding Spike Trains Instant by Instant Using Order Statistics and the Mixture-of-Poissons Model , 2003, The Journal of Neuroscience.

[55]  P. Fuchs,et al.  The afferent synapse of cochlear hair cells , 2003, Current Opinion in Neurobiology.

[56]  Stefano Panzeri,et al.  Coding of Sensory Signals by Neuronal Populations: The Role of Correlated Activity , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[57]  Peter Heil,et al.  A unifying basis of auditory thresholds based on temporal summation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[58]  John C Middlebrooks,et al.  Spatial sensitivity in field PAF of cat auditory cortex. , 2003, Journal of neurophysiology.

[59]  Stefan Rotter,et al.  Elimination of response latency variability in neuronal spike trains , 2003, Biological Cybernetics.

[60]  Peter Heil,et al.  Coding of temporal onset envelope in the auditory system , 2003, Speech Commun..

[61]  Benedikt Grothe,et al.  Hyperpolarization-activated current (Ih) in the inferior colliculus: distribution and contribution to temporal processing. , 2003, Journal of neurophysiology.

[62]  John C. Middlebrooks,et al.  Directional sensitivity of neurons in the primary auditory (AI) cortex: effects of sound-source intensity level. , 2003, Journal of neurophysiology.

[63]  Ellen Covey,et al.  Temporal Masking Reveals Properties of Sound-Evoked Inhibition in Duration-Tuned Neurons of the Inferior Colliculus , 2003, The Journal of Neuroscience.

[64]  John C. Middlebrooks,et al.  Distributed coding of sound locations in the auditory cortex , 2003, Biological Cybernetics.

[65]  M. DeWeese,et al.  Binary Spiking in Auditory Cortex , 2003, The Journal of Neuroscience.

[66]  Rick L Jenison,et al.  Directional Sensitivity of Neurons in the Primary Auditory ( AI ) Cortex : Effects of Sound-Source Intensity Level , 2003 .

[67]  R. Rübsamen,et al.  Decreased Temporal Precision of Auditory Signaling in Kcna1-Null Mice: An Electrophysiological Study In Vivo , 2003, Journal of Neuroscience.

[68]  B. Sakmann,et al.  Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. , 2003, The Journal of physiology.

[69]  P. Lennie The Cost of Cortical Computation , 2003, Current Biology.

[70]  Alon Fishbach,et al.  Neural model for physiological responses to frequency and amplitude transitions uncovers topographical order in the auditory cortex. , 2003, Journal of neurophysiology.

[71]  B. Suresh Krishna,et al.  A Unified Mechanism for Spontaneous-Rate and First-Spike Timing in the Auditory Nerve , 2002, Journal of Computational Neuroscience.

[72]  Xiaoqin Wang,et al.  Information content of auditory cortical responses to time-varying acoustic stimuli. , 2004, Journal of neurophysiology.

[73]  Achim Klug,et al.  Interaural level difference processing in the lateral superior olive and the inferior colliculus. , 2004, Journal of neurophysiology.

[74]  J. Fritz,et al.  Dynamics of Precise Spike Timing in Primary Auditory Cortex , 2004, The Journal of Neuroscience.

[75]  R. Johansson,et al.  First spikes in ensembles of human tactile afferents code complex spatial fingertip events , 2004, Nature Neuroscience.