On Continuous Time Agents

Continuous time agents are studied in an enriched categorical framework that allows for a comprehensive treatment of both the interleaving and the true concurrent paradigms in parallelism. The starting point is a paper by Cardelli, where actions have a duration in a (dense) time domain. More recent works are also briefly considered and some possible directions towards timed “true concurrent” processes are indicated.

[1]  Glynn Winskel,et al.  Event Structures , 1986, Advances in Petri Nets.

[2]  R. Walters Sheaves on sites as Cauchy-complete categories , 1982 .

[3]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[4]  Wolfgang Reisig Petri Nets: An Introduction , 1985, EATCS Monographs on Theoretical Computer Science.

[5]  Charles Ehresmann,et al.  Sheaves and Cauchy-complete categories , 1981 .

[6]  Andy Boucher,et al.  A Timed Failures Model for Extended Communicating Processes , 1987, ICALP.

[7]  Ugo Montanari,et al.  Axiomatizing net computations and processes , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[8]  C. A. R. Hoare,et al.  A Theory of Communicating Sequential Processes , 1984, JACM.

[9]  José Meseguer,et al.  Temporal Structures , 1989, Mathematical Structures in Computer Science.

[10]  Eugene W. Stark,et al.  Concurrent Transition Systems , 1989, Theor. Comput. Sci..

[11]  Alberto Pettorossi,et al.  Enriched Categories for Local and Interaction Calculi , 1987, Category Theory and Computer Science.

[12]  Antoni W. Mazurkiewicz,et al.  Trace Theory , 1986, Advances in Petri Nets.

[13]  R. F. C. Walters,et al.  On completeness of locally-internal categories☆ , 1987 .

[14]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[15]  Matthew Hennessy,et al.  Algebraic theory of processes , 1988, MIT Press series in the foundations of computing.

[16]  M. Joseph,et al.  Relating Computation and Time , 1989 .

[17]  Alan Jeffrey A Linear Time Process Algebra , 1991, CAV.

[18]  Ugo Montanari,et al.  Concurrent Histories: A Basis for Observing Distributed Systems , 1987, J. Comput. Syst. Sci..

[19]  Fabio Rossi,et al.  Cofibrations and the realization of non-deterministic automata , 1983 .

[20]  Faron Moller,et al.  A Temporal Calculus of Communicating Systems , 1990, CONCUR.

[21]  Stefano Kasangian,et al.  An axiomatics for bicategories of modules , 1987 .

[22]  Glynn Winskel,et al.  Synchronization Trees , 1984, Theor. Comput. Sci..

[23]  Anna Labella,et al.  Enriched categorial semantics for distributed calculi , 1992 .

[24]  Robin Milner,et al.  Calculi for Synchrony and Asynchrony , 1983, Theor. Comput. Sci..

[25]  Jan A. Bergstra,et al.  Algebra of Communicating Processes with Abstraction , 1985, Theor. Comput. Sci..

[26]  J. Benabou Introduction to bicategories , 1967 .

[27]  Luca Cardelli,et al.  Real Time Agents , 1982, International Colloquium on Automata, Languages and Programming.

[28]  José Meseguer,et al.  Petri nets are monoids: a new algebraic foundation for net theory , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.