Circumcentering the Douglas–Rachford method
暂无分享,去创建一个
Roger Behling | José Yunier Bello Cruz | Luiz-Rafael Santos | R. Behling | Yunier Bello Cruz | L. Santos
[1] H. H. Rachford,et al. On the numerical solution of heat conduction problems in two and three space variables , 1956 .
[2] D. Russell Luke,et al. Alternating Projections and Douglas-Rachford for Sparse Affine Feasibility , 2013, IEEE Transactions on Signal Processing.
[3] P. L. Combettes,et al. Foundation of set theoretic estimation , 1993 .
[4] Raniere Silva,et al. Perprof-py: A Python Package for Performance Profile of Mathematical Optimization Software , 2016 .
[5] Benar Fux Svaiter,et al. On Weak Convergence of the Douglas-Rachford Method , 2010, SIAM J. Control. Optim..
[6] Heinz H. Bauschke,et al. On the local convergence of the Douglas–Rachford algorithm , 2014, 1401.6188.
[7] Alan Edelman,et al. Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..
[8] P. Lions,et al. Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .
[9] Joël Benoist,et al. The Douglas–Rachford algorithm for the case of the sphere and the line , 2015, J. Glob. Optim..
[10] Jonathan M. Borwein,et al. A Cyclic Douglas–Rachford Iteration Scheme , 2013, J. Optim. Theory Appl..
[11] Heinz H. Bauschke,et al. On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..
[12] Heinz H. Bauschke,et al. Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.
[13] Heinz H. Bauschke,et al. Optimal Rates of Linear Convergence of Relaxed Alternating Projections and Generalized Douglas-Rachford Methods for Two Subspaces , 2015, Numerical Algorithms.
[14] Jonathan M. Borwein,et al. Global behavior of the Douglas–Rachford method for a nonconvex feasibility problem , 2015, J. Glob. Optim..
[15] Jonathan M. Borwein,et al. Global convergence of a non-convex Douglas–Rachford iteration , 2012, J. Glob. Optim..
[16] Jonathan M. Borwein,et al. Recent Results on Douglas–Rachford Methods for Combinatorial Optimization Problems , 2013, J. Optim. Theory Appl..
[17] Hung M. Phan,et al. Linear convergence of the Douglas–Rachford method for two closed sets , 2014, 1401.6509.
[18] Heinz H. Bauschke,et al. The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle , 2013, J. Approx. Theory.
[19] Jonathan M. Borwein,et al. The Douglas-Rachford Algorithm in the Absence of Convexity , 2011, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.
[20] P. L. Combettes. The foundations of set theoretic estimation , 1993 .
[21] Andrzej Cegielski,et al. Projection methods: an annotated bibliography of books and reviews , 2014, 1406.6143.
[22] D. Russell Luke,et al. Nonconvex Notions of Regularity and Convergence of Fundamental Algorithms for Feasibility Problems , 2012, SIAM J. Optim..
[23] Heinz H. Bauschke,et al. On the Douglas–Rachford algorithm , 2016, Mathematical Programming.
[24] Howard L. Weinert,et al. Error bounds for the method of alternating projections , 1988, Math. Control. Signals Syst..
[25] Heinz H. Bauschke,et al. Linear and strong convergence of algorithms involving averaged nonexpansive operators , 2014, Journal of Mathematical Analysis and Applications.
[26] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[27] Karin Schwab,et al. Best Approximation In Inner Product Spaces , 2016 .
[28] C. Badea,et al. The rate of convergence in the method of alternating projections , 2010, 1006.2047.
[29] F. Deutsch. The Angle Between Subspaces of a Hilbert Space , 1995 .