The incidence of hypoxemia during surgery: evidence from two institutions

PurposeThe incidence of hypoxemia in patients undergoing surgery is largely unknown and may have a clinical impact. The objective of this study was to determine the incidence of intraoperative hypoxemia in a large surgical population.MethodsWe performed a retrospective study of electronically recorded pulse oximetry data obtained from two large academic medical centres. All adults (age ≥ 16 yr) undergoing non-cardiac surgery during a three-year period at the two hospitals were included in the analysis. Our main outcome measure was the percentage of patients with episodes of hypoxemia (SpO2 < 90) or severe hypoxemia (SpO2 ≤ 85) for two minutes or longer during the intraoperative period (induction of anesthesia, surgery, and emergence).ResultsWe evaluated 95,407 electronic anesthesia records at the two hospitals. During the intraoperative period, 6.8% of patients had a hypoxemic event, and 3.5% of patients had a severely hypoxemic event of two consecutive minutes or longer. Seventy percent of the hypoxemic episodes occurred during either induction or emergence— time periods that represent 21% of the total intraoperative time. From induction to emergence, one episode of hypoxemia occurred every 28.9 hr, and one episode of severe hypoxemia occurred every 55.7 hr of intraoperative time.ConclusionDespite advances in monitoring technology, hypoxemia continues to occur commonly in the operating room and may be a serious safety concern because of its potential impact on end organ function and long-term outcomes. Further studies are needed to improve our understanding of the clinical impact of intraoperative hypoxemia and the strategies that will be most useful in minimizing its occurrence.RésuméObjectifL’incidence de l’hypoxémie chez les patients subissant une chirurgie est très mal connue et pourrait avoir des répercussions cliniques. L’objectif de cette étude était de déterminer l’incidence de l’hypoxémie peropératoire chez une vaste population chirurgicale.MéthodeNous avons réalisé une étude rétrospective des données d’oxymétrie du pouls sauvegardées électroniquement dans deux centres médicaux universitaires importants. Dans notre analyse, nous avons inclus tous les adultes (âge ≥ 16 ans) subissant une chirurgie non cardiaque au cours d’une période de trois ans dans les deux hôpitaux. La mesure principale était le pourcentage de patients manifestant des épisodes d’hypoxémie (SpO2 < 90) ou d’hypoxémie sévère (SpO2 ≤ 85) pendant deux minutes ou plus en période peropératoire (induction de l’anesthésie, chirurgie et réveil).RésultatsAu total, nous avons évalué 95 407 dossiers anesthésiques électroniques dans les deux hôpitaux. En période peropératoire, 6,8 % des patients ont subi un événement hypoxémique, et 3,5 % des patients ont subi un événement hypoxémique grave de deux minutes consécutives ou plus en période peropératoire. Soixante-dix pour cent des épisodes hypoxémiques sont survenus pendant l’induction ou le réveil, des périodes représentant 21 % du temps peropératoire total. De l’induction au réveil, un épisode d’hypoxémie est survenu toutes les 28,9 heures de temps peropératoire, et un épisode d’hypoxémie grave est survenu toutes les 55,7 heures.ConclusionMalgré les progrès réalisés au niveau des technologies de monitorage, l’hypoxémie continue d’être un événement fréquent en salle d’opération et pourrait constituer une problème de sécurité sérieux en raison de ses répercussions potentielles sur la fonction des organes cibles et les devenirs à long terme. D’autres études sont de mise pour améliorer notre compréhension des répercussions cliniques de l’hypoxémie peropératoire et des stratégies qui seront le plus utiles pour minimiser sa survenue.

[1]  P I KORNER,et al.  Circulatory adaptations in hypoxia. , 1959, Physiological reviews.

[2]  P F Salisbury,et al.  Effects of arterial hypoxia on the heart and circulation: an integrative study. , 1963, The American journal of physiology.

[3]  R S Newbower,et al.  Preventable anesthesia mishaps: a study of human factors* , 1978, Anesthesiology.

[4]  R S Newbower,et al.  An Analysis of Major Errors and Equipment Failures in Anesthesia Management: Considerations for Prevention and Detection , 1984, Anesthesiology.

[5]  R L Keenan,et al.  Cardiac arrest due to anesthesia. A study of incidence and causes. , 1985, JAMA.

[6]  J. Cooper,et al.  Standards for patient monitoring during anesthesia at Harvard Medical School. , 1986, JAMA.

[7]  D. Hoaglin,et al.  A single-blind study of pulse oximetry in children. , 1988, Anesthesiology.

[8]  J B Gross,et al.  Principles of Pulse Oximetry: Theoretical and Practical Considerations , 1989, Anesthesia and analgesia.

[9]  A. Zaslavsky,et al.  A single-blind study of combined pulse oximetry and capnography in children. , 1990, Anesthesiology.

[10]  R. Keenan,et al.  Decreasing frequency of anesthetic cardiac arrests. , 1991, Journal of clinical anesthesia.

[11]  J. Møller,et al.  Hypoxaemia during anaesthesia--an observer study. , 1991, British journal of anaesthesia.

[12]  J. Canet,et al.  Postanesthetic hypoxemia and oxygen administration. , 1991, Anesthesiology.

[13]  J. Møller,et al.  Hypoxaemia is reduced by pulse oximetry monitoring in the operating theatre and in the recovery room. , 1992, British journal of anaesthesia.

[14]  J. Severinghaus,et al.  Recent Developments in Pulse Oximetry , 1992, Anesthesiology.

[15]  Joachim S. Gravenstein,et al.  Randomized Evaluation of Pulse Oximetry in 20,802 Patients; II: Perioperative Events and Postoperative Complications , 1993, Anesthesiology.

[16]  B. Chraemmer-jørgensen,et al.  Randomized Evaluation of Pulse Oximetry in 20,802 Patients; I: Design, Demography, Pulse Oximetry Failure Rate, and Overall Complication Rate , 1993, Anesthesiology.

[17]  J. Eichhorn Effect of Monitoring Standards on Anesthesia Outcome , 1993, International anesthesiology clinics.

[18]  M. Brezis,et al.  Hypoxia of the renal medulla--its implications for disease. , 1995, The New England journal of medicine.

[19]  C. Hanning,et al.  Fortnightly Review: Pulse oximetry: a practical review , 1995 .

[20]  D. Reich,et al.  Predictors of Pulse Oximetry Data Failure , 1996, Anesthesiology.

[21]  F. Xue,et al.  A Comparative Study of Early Postoperative Hypoxemia in Infants, Children, and Adults Undergoing Elective Plastic Surgery , 1996, Anesthesia and analgesia.

[22]  F. Xue,et al.  Influence of surgical technique on early postoperative hypoxaemia in children undergoing elective palatoplasty. , 1998, British journal of anaesthesia.

[23]  R. Donham Defining Measurable OR‐PR Scheduling, Efficiency, and Utilization Data Elements: The Association of Anesthesia Clinical Directors Procedural Times Glossary , 1998, International anesthesiology clinics.

[24]  R. Crapo,et al.  The accuracy of pulse oximetry in the emergency department. , 2000, The American journal of emergency medicine.

[25]  O. Akca,et al.  Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. , 2000, The New England journal of medicine.

[26]  C. Poets,et al.  Pulse oximeters’ reliability in detecting hypoxemia and bradycardia: Comparison between a conventional and two new generation oximeters , 2000, Critical care medicine.

[27]  A. Matsuki,et al.  Supplemental Intraoperative Oxygen Augments Antimicrobial and Proinflammatory Responses of Alveolar Macrophages , 2000, Anesthesiology.

[28]  D. Gozal,et al.  Behavioral and Anatomical Correlates of Chronic Episodic Hypoxia during Sleep in the Rat , 2001, The Journal of Neuroscience.

[29]  A F Merry,et al.  A New, Safety-Oriented, Integrated Drug Administration and Automated Anesthesia Record System , 2001, Anesthesia and analgesia.

[30]  Mahmood Saghaei,et al.  Evaluating the Relationship Between Arterial Blood Pressure Changes and Indices of Pulse Oximetric Plethysmography , 2002, Anesthesia and analgesia.

[31]  D. Sessler,et al.  Supplemental oxygen reduces the incidence of postoperative nausea and vomiting. , 1999, Minerva anestesiologica.

[32]  C. Durbin,et al.  Advantages of new technology pulse oximetry with adults in extremis. , 2002, Anesthesia and analgesia.

[33]  S. Barker,et al.  “Motion-Resistant” Pulse Oximetry: A Comparison of New and Old Models , 2002, Anesthesia and analgesia.

[34]  A. Møller,et al.  Pulse Oximetry for Perioperative Monitoring: Systematic Review of Randomized, Controlled Trials , 2003, Anesthesia and analgesia.

[35]  David Gozal,et al.  The Effect of Chronic or Intermittent Hypoxia on Cognition in Childhood: A Review of the Evidence , 2004, Pediatrics.

[36]  J. Derrick,et al.  Sampling Intervals to Record Severe Hypotensive and Hypoxic Episodes in Anesthetised Patients , 1998, Journal of Clinical Monitoring and Computing.

[37]  Impact of Anesthesia Management Characteristics on Severe Morbidity and Mortality , 2005 .

[38]  Karen L. Posner,et al.  A prospective study of intraoperative pulse oximetry failure , 1991, Journal of Clinical Monitoring.

[39]  P. Gregorini Comparison of four methods of automated recording of physiologic data at one minute intervals , 1996, Journal of Clinical Monitoring.

[40]  D. Sessler,et al.  Antenatal Betamethasone and Incidence of Neonatal Respiratory Distress After Elective Caesarean Section: Pragmatic Randomized Trial , 2005, JAMA.

[41]  Rodolfo Proietti,et al.  Continuous Monitoring of Cerebral Oxygen Saturation in Elderly Patients Undergoing Major Abdominal Surgery Minimizes Brain Exposure to Potential Hypoxia , 2005, Anesthesia and analgesia.

[42]  J. Zieliński Effects of intermittent hypoxia on pulmonary haemodynamics: animal models versus studies in humans , 2005, European Respiratory Journal.

[43]  D. Grobbee,et al.  Impact of Anesthesia Management Characteristics on Severe Morbidity and Mortality , 2005, Anesthesiology.

[44]  Lorri A. Lee,et al.  Management of the difficult airway: a closed claims analysis. , 2005 .

[45]  Lorri A. Lee,et al.  Trends in Anesthesia-related Death and Brain Damage: A Closed Claims Analysis , 2006, Anesthesiology.

[46]  Michael M. Vigoda,et al.  Anesthesia Information Management Systems: A Survey of Current Implementation Policies and Practices , 2007, Anesthesia and analgesia.

[47]  W. Berry,et al.  An estimation of the global volume of surgery: a modelling strategy based on available data , 2008, The Lancet.

[48]  K. Heilman,et al.  Predictors of Cognitive Dysfunction after Major Noncardiac Surgery , 2008, Anesthesiology.

[49]  Alex Macario,et al.  Adoption of Anesthesia Information Management Systems by Academic Departments in the United States , 2008, Anesthesia and analgesia.

[50]  D. Wax,et al.  A Comparison of Transmittance and Reflectance Pulse Oximetry During Vascular Surgery , 2009, Anesthesia and analgesia.

[51]  W. Sandberg,et al.  Misalignment of disposable pulse oximeter probes results in false saturation readings that influence anesthetic management. , 2009, Anesthesia and analgesia.

[52]  Franklin Dexter,et al.  Implications of Event Entry Latency on Anesthesia Information Management Decision Support Systems , 2009, Anesthesia and analgesia.

[53]  D. Bracco,et al.  Reduced cerebral oxygen saturation measured by absolute cerebral oximetry during thoracic surgery correlates with postoperative complications. , 2009, British journal of anaesthesia.

[54]  D. Sessler Long-term consequences of anesthetic management. , 2009, Anesthesiology.

[55]  K. Brown,et al.  Guidelines to the Practice of Anesthesia Revised Edition 2010 , 2010, Canadian journal of anaesthesia = Journal canadien d'anesthesie.

[56]  C. King Extending the WHO ‘Safe Surgery Saves Lives’ project through global oximetry , 2010, Anaesthesia.

[57]  Steven Dain,et al.  Guidelines to the Practice of Anesthesia Revised Edition 2013 , 2012, Canadian Journal of Anesthesia/Journal canadien d'anesthésie.